アンジュレータ

田中隆次 理研放射光センター

- ・アンジュレータ工学一般論(2節)
- ・真空封止型アンジュレータ(3節)
- ・アンジュレータコミッショニング(4節)

- 真空封止型アンジュレータ
- アンジュレータコミッショニング

アンジュレータとは? 放射光源 偏向磁石 電子を曲げて放射光を取り 出すための磁場発生装置 挿入光源 📷 N S N S N S N 周期的磁場発生 ・ウィグラ ✓インコヒーレントな光源 (=偏向磁石×極数) •アンジュレータ ✓コヒーレントな光源

ハルバック型磁気回路の磁場分布

 $G_n \& H_n$: ギャップ及び磁石高さの影響 1.0 H₁ 周期長の半分程度磁石 の厚みがあれば十分 ⊥_____ ບ______ ギャップに対して 指数関数的に減衰 G₁ 0.0 2 $g/\lambda_{\mu},h/\lambda_{\mu}$

吸引力の評価

アンジュレータ磁場測定:磁場分布

磁場センサに要求される仕様 ✓ 狭い感応部(大きな磁場勾配) ✓ 測定速度(多点数の測定)

長尺石定

高剛性・高精度石定盤による ホール素子駆動システム ○ホール素子の位置誤差小 ×側面からのフリーアクセス要 ×可搬性

- ・アンジュレータ工学一般論
- ・真空封止型アンジュレータ
- アンジュレータコミッショニング

重要な利点:ギャップの物理的制約

放射線減磁とその対策

その場磁場測定(1)

• 真空封止アンジュレータ

--従来手法の適用不可

-磁石列単体での測定

▶ 真空槽設置のため測定後の脱 着が必要

・"その場"磁場測定

–真空槽設置下での磁場測定

> 真空槽設置後の磁場性能

> 長期運転後の磁場性能

-クライオアンジュレータ

新しい概念による
磁場測定法の必要性

その場磁場測定(2)

- "その場"磁場測定を可能にするSAFALI
 - 簡素なホール素子駆動システム
 - 真空槽内に設置可能
 - 可視レーザによるホール素子の横位置変動監 視と動的フィードバック
 - レーザ測長計による縦位置測定

SAFALI <u>Self-Aligned Field Analyzer with</u> <u>Laser Instrumentation</u>

SAFALI適用例

- SPring-8 BL35XU
 - 10年間運転後交換し、磁場測定:減磁の兆候 は確認されず
- クライオアンジュレータ
 - IVUの永久磁石を冷却し磁場特性を向上
 - SLS用(2009)、SPring-8用(2012)
- SACLA用IVU
 - 光源棟アンジュレータラインに設置後全セグ メントについて測定
 - 必要に応じて磁場調整(ボールネジの微調)

- アンジュレータ工学一般論
- ・ 真空封止型アンジュレータ
- ・アンジュレータコミッショニング

アンジュレータコミッショニング

- SACLAでレーザー飽和を達成するには 5mx18台ものIVUセグメントが必要
- ・ 全セグメントがコヒーレントに動作し、
 単一デバイスとして機能する必要あり
 - >アンジュレータコミッショニング
- 調整項目
 - ステアリング磁石(軌道の直線性)
 - アンジュレータギャップと高さ (K値)
 - 位相シフタ (位相整合)
 - テーパ (ウェイク場の補正)

アラインメント目標値と手法

ターゲット項目		目標値	調整手法
軌道	BPM	2.2 μm	-
	入射角度	$0.5 \mu rad$	角度分布
K值	ギャップ	1.9 μm	スペクトル
	高さ	60 μm	
	総計	5x10 ⁻⁴	-
位相整合		30°	スペクトル

セグメント入射角の評価

単色化SRビームの位置安定性

スペクトルの計算例

37

位相シフター

アラインメント目標値と手法

ターゲット項目		目標値	達成値
軌道	BPM	2.2 μm	-
	入射角度	0.5 μ rad	0.22 μ rad (x) 0.48 μ rad (y)
K値	ギャップ	1.9 μm	0.6 μ m
	高さ	60 μm	10 μm
	総計	5x10 ⁻⁴	2x10 ⁻⁴
位相整合		30°	15°