はじめに

大型ハドロン計画では、3 GeVブースターと50 GeV主リングの2つをシンクロトロンと考慮しているので、加速システムもそれに合った二種類のものが必要となる。この2つの加速システムに共通な要求は、(1) これまでの陽子加速器で最大級（Rutherford Appleton研究所のISISと同程度）のビーム電流を加速する必要がある、(2) 限られた周波数に必要な数の空洞を収めるため、単位長さあたりの加速電圧を大きくしなければならないと言える点である。3 GeVブースターのための空洞に更に必要な点として、(3) 遅い減衰速度（2.5 Hz または50 Hz）のため空洞の共振周波数を極めて高く変化させる必要があることが上げられる。ところが、フェライトによって磁気特性が低下するものもあるとは別の説明によって述べられている。50 GeV主リングの空洞は（4）結合バンチ不安定性を減らすため寄生共鳴を弱くする、(5) ブースターからの入射時にバンチが全体の一部に寄っている状態、またはビームギャップによって生じる過渡的なビーム負荷に対しても安定であることが必要となる。

大型ハドロン計画シンクロトロンの加速に関連する主なパラメータを表に示す。

<table>
<thead>
<tr>
<th>3 GeV</th>
<th>50 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブースター</td>
<td>主リング</td>
</tr>
</tbody>
</table>

周長 | 340 m | 1145 m |
入射エネルギー | 200 MeV | 3 GeV |
取り出しエネルギー | 3 GeV | 50 GeV |
γの最大値 | 4.2 | 5.4.3 |
トランジションγ | 7.1 | 3.1.6i |
ハーモニック数 | 4 | 1.7 |
バンチ数 | 4 | 1.6 |
周波数 | 2〜3.4MHz | 3.4〜3.5MHz |
電圧 | 450 kV | 300 kV |
ビーム位相の最大値 | 40度 | 30度 |
繰り返し | 25/(50Hz) | 0.3Hz |
加速時間 | 20(10)ms | 1.9s |
運動量アパチャー | 0.5% | 0.5% |
ビーム強度 | 5×10^13 | 2×10^14 |
周回電流 | 4〜7 A | 7 A |

本テキストでは陽子加速器の高周波加速システムの基本について述べる。第1章ではシンクロトロンでの加速を理解するために必要な位相方程式と高周波パケツの概念について復習する。第2章では制御系を理解するために用いられる伝達関数について述べる。さらにビーム伝達関数を求める、デルタRと位相ループのみの簡単なフィードバックについて考える。第3章では、12 GeVP S等を例に陽子加速器の制御系について考える。第4章ではビーム負荷のある場合での系の安定性についてF.Pedersenの方式に基づいて考える。空洞の伝達関数を用いて、空洞の合成電流、Rから出力電圧への伝達関数を求める。系の安定性を判別するのに用いられるRouth-Hurwitz判別法についても述べる。第5章ではビームローディング対策としてどのようなことが大気層の陽子加速器で行われているか紹介する。ISISのフィードフォワード法とAGSのフィードバック法について説明する。この章の最後にフィードバック法を用いたときのモデルを限定するスケール等による遅延の効果について簡単に解説する。第6章ではビームが全てのパケツに入っている状態で起こる過渡的ビームローディングについて解説する。第7章では結合バンチ不安定性に対する対策として寄生共鳴を減らす手法についていくつか紹介する。
第1章. 粒子の運動

1.1 位相方程式の復習

軸方向の位相空間での粒子の運動を表す運動方程式はすでにOH84などで詳しく述べられているので、ここではそのビーム制御を理解するための知識として最小の範囲にとどめる。詳しくは文献[1]を参照されたい。さて、シンクロトロンにおける粒子の回転周波数は

\[\omega_{\text{rev}} = \frac{2\pi}{\tau} = \frac{2\pi \beta c}{L} \quad (1) \]

で与えられる。ここでτは周期でLは軌道長である。良く知られているように

\[\frac{d\omega_{\text{rev}}}{\omega_{\text{rev}}} - \frac{d\tau}{\tau} = \frac{d\beta}{\beta} - \frac{dL}{L} = \left(\frac{1}{\gamma^2} - \alpha_\rho \right) \frac{dp}{p} \quad (2) \]

であり、括弧の中を通常

\[\eta = \frac{1}{\gamma^2} - \alpha_\rho = \frac{1}{\gamma^2} - \frac{1}{\gamma_T^2} \quad (3) \]

phase slip factorと呼ぶ。これがゼロとなるときがトランジションであり、陽子シンクロトロンにおける重要な問題となる。その時のγをトランジションガンマと呼び、これはmomentum compaction factor \(\alpha_\rho \) の平方根の逆数、

\[\gamma = 1/\sqrt{\alpha_\rho} = \gamma_T \quad (4) \]

である。

\[\alpha_\rho = \frac{1}{L} \int \frac{\eta(s)}{\rho(s)} ds \]

である。ただし、\(\Delta \) は

\[\Delta x(s) = \eta(s) \Delta \rho \rho \]

である。したがって

\[\alpha_\rho = \frac{1}{L} \int \frac{\eta(s)}{\rho(s)} ds \quad (5) \]

で表される。ここで、\(V\sin \omega_{\text{RF}} t \) と \(V \) はベータトロン振動に比べゆっくりと変化する。偏向電磁石の磁場をB、その中での粒子の曲率半径を\(p \) とすると粒子の運動量は

\[p = eB \rho \quad (6) \]

となり、ここで\(p \) はシンクロトロンにおいては一定であるから、

\[\dot{p} = epB \quad (7) \]

である。ここで、高周波パケッテの中心に存在する粒子（例えばベータトロン振動の振幅が0で電磁石の設計上の中心軌道上を通りる粒子）をsynchronous particleと呼び、時刻t=0で空間の電圧、

\[V \sin \omega_{\text{RF}} t \]

に対する相対位相\(\phi \)で空間のギャップを通過する。粒子がシンクロトロンを一周する時のエネルギーの増加は

\[\Delta E = 2\pi e \rho RB \quad (8) \]

となる。したがって
\[eV \sin \phi_s = 2 \pi e \rho R B \]

(9)

\[
\frac{d \delta \phi}{dt} = h \eta \omega \frac{\Delta p}{p} = \frac{h \eta}{pR} \Delta E
\]

(21)

であり、この\(\phi_s \)をsynchronous phaseと呼ぶ。この式から解けるように、電磁石の励磁パターン、B(t)がききれば、synchronous phaseはその時の高周波電圧から一意的に求まる。

このsynchronous particleの基準として、次の様々な変位を持った粒子を考える。

エネルギー
\[E = E_s + \Delta E \]

(10)

運動量
\[p = p_s + \delta p \]

(11)

角速度
\[\omega = \omega_s + \delta \omega \]

(12)

回転周期
\[\tau = \tau_s + \delta \tau \]

(13)

位相
\[\phi = \phi_s + \delta \phi \]

(14)

一週あたりのエネルギーの増加はこの粒子については

\[\Delta E = eV \sin \phi \]

(15)

であり、synchronous particleについては

\[\Delta E_s = eV \sin \phi_s \]

(16)

である。したがって、synchronous particleとのエネルギーの差（\(\Delta E \)）の一周後の変化は

\[\Delta (\Delta E) = eV (\sin \phi - \sin \phi_s) \]

(17)

となる。ここで

\[\frac{d \Delta (\Delta E)}{dt} = \frac{\Delta (\Delta E)}{\tau_s} \]

(18)

と近似できるから、運動方程式のひとつ

\[\frac{d \Delta (\Delta E)}{dt} = \frac{eV}{2\pi} \omega_s (\sin \phi - \sin \phi_s) \]

(19)

が得られる。（2）式より

\[\Delta p = \frac{p}{\eta} \Delta \omega = \frac{p}{h \eta \omega} \cdot \delta \phi \]

(20)

問題2 この二つの運動方程式から、\(\phi \cdot \phi_s \)の場合のシンクロトロン振動の方程式と振動数を導く。

問題3 Stationary bucketの場合（\(\phi_s = 0 \)、加減速しない場合）、安定不動点と不安定不動点は何か、この不安定不動点を通る粒子の軌跡（separatrix）は
第2章 伝達関数

高エネルギー加速器のような複雑な系の安定性を議論する時、系を線形のシステムで見ると、伝達関数は系の入力$x(t)$を線形システムに加えるとき、s領域での出力の関係は

$$y(s) = G(s)x(s)$$

となる。ここで$G(s)$はシステムの伝達関数である。$x(s)$と$y(s)$は$x(t)$と$y(t)$のラプラス変換である。この伝達関数$G(s)$は複素変数sの関数であり、sは

$$s = \sigma + j\omega$$

とする。これらの伝達関数については文献[2]で詳しく説明されているので参照されたい。

問題4 moving bucketの場合 separatrixは

$$W = \pm \frac{evpr}{\pi\eta\omega^2} \left[\cos \phi + \cos \phi_s + (\phi + \phi_s - \pi) \sin \phi_s \right]$$

で与えられ、パケツの面積は

$$S_0 = 8 \frac{evpr}{\pi\eta\omega^2} \alpha(\sin \phi_s)$$

となるが、ここでαがどのような関数か確かめよ

* * * *

2.1 ビーム伝達関数

この後述するビーム制御を理解するうえに次にビームの伝達関数について理解しよう。まずビームを一つのマクロ粒子として考える近似を使うことにする。そして、この粒子の運動はsynchronous particleの周りの微小振動で記述できるとする。そこで始めに入力であるRF周波数に誤差がある場合を考えよう。この誤差により出力であるビームの位相、周波数、回転半径の変化量は

$$\delta\phi_B = B_s \delta\omega_{RF}$$

$$\delta\omega_B = B_\omega \delta\omega_{RF}$$

$$\delta_R = B_r \delta\omega_{RF}$$

と記述できるとする。この第一式のビーム伝達関数、Bを求めてみよう。前に求めた運動方程式（19）を、簡単のため
\[
\frac{d}{dt}(\delta E) = \frac{eV\omega}{2\pi} \left[\sin(\phi_x + \delta\phi_b) - \sin\phi_x \right] \\
= \left[\frac{eV\omega}{2\pi} \cos\phi_x \right] \delta\phi_b
\] \hspace{1cm} (30)

と書き直しておく。もう一つの運動方程式 (21) は誤差の項を加える

\[
\frac{d}{dt}(\delta\phi_b) = \left[\frac{\hbar n}{pR} \delta E + \delta\omega_{RF} \right] = \frac{\omega_{RF} n}{\beta E} \delta E + \delta\omega_{RF}
\] \hspace{1cm} (31)

と書くことが出来る。式 (30) に式 (31) を代入しラプラス変換することにより

\[
\delta\phi_b(s) = \frac{s}{s^2 + \omega_b^2} \delta\omega_{RF}(s)
\] \hspace{1cm} (32)

が導ける。すなわち B_\phi(s) = s(s^2 + \omega_b^2) である。ここで

\[
\omega_b^2 = h e V_{RF} \left(\frac{\omega}{\beta} \right)^2 \left(\frac{n \cos\phi_x}{2\pi E} \right)
\] \hspace{1cm} (33)

である。

\[
\ast\ast\ast
\]

問題5 同様に B_R(s) と B_\omega(s) を導け。ここで

\[
\delta R = \frac{R}{\gamma_{TR} \beta^2} \cdot \delta E / E,
\]

\[
\delta\omega_b = -\eta \omega_b / \beta^2 \cdot \delta E / E
\]

である。

\[
\ast\ast\ast
\]

もう一つの例として、電圧に電圧差 V_0 a(t) と位相差 φ_V(t) がある場合どのように粒子の位相φ_b(t)

\[
B_b(s) = \frac{b}{s^2 + \omega_b^2} \cdot b = \frac{ceV}{2\pi \beta \gamma_{TR} E} \cos\phi_x
\]

に反映するかを考えることにする。すると運動方程式 (19) は

\[
\frac{d}{dt}(\delta E) = \frac{eV\omega}{2\pi} \left[V(t) \sin(\phi_x - \delta\phi_b + \delta\phi_v) - V_0 \sin\phi_x \right] \\
= \frac{eV\omega}{2\pi} V_0 \left[(1 + a(t)) \sin(\phi_x - \delta\phi_b + \delta\phi_v) - \sin\phi_x \right] \\
= \frac{eV\omega}{2\pi} \cos\phi_x \left[-\delta\phi_b + \delta\phi_v + \sin\phi_x \cdot a(t) \right]
\]

となり、これと式 (31) から

\[
\frac{d^2}{dt^2} + \omega_b^2 \delta\phi = \omega_b^2 \delta\phi_b - \omega_b^2 \tan\phi_x \cdot a(t)
\] \hspace{1cm} (35)

が得られ、ラプラス変換して

\[
p_b(s) = \frac{\omega_b^2}{s^2 + \omega_b^2} (p_v(s) + \tan\phi_x \cdot a_v(s))
\] \hspace{1cm} (36)

が得られる。ここで、p_B(s), p_V(s), a_V(s) はそれぞれ、δφ_b(t), δφ_v(t), a(t) のラプラス変換である。これをブロック図で描くと図 1 のようになる。

\[
\ast\ast\ast
\]

図 1、電圧誤差の伝達のブロック図

2.2 簡単なフィードバックの例

問題5 で求めたビームの伝達関数、
を用いて、ビームの位置の情報を高周波電圧にフィードバックした場合について考えてみる。即ち図2のような制御ループを考えてみる。

\[\delta R = B_R \delta \omega_{RF} = k B_R R = \frac{kb}{s^2 + \omega_s^2} R \] \hspace{1cm} (42)

であるから、この\(\Delta R \)ループは\(\omega_s^2 \)を\(\omega_s^2 + kb \)にシフトさせる役割を果たしていることが解かる。すなわち、この運動はダンプされていない。これに対し、同様のループを位相差\(\delta \phi \)について考える。基準となる\(\Delta R \)ループの補正をした位相入力\(\phi_R \)と位相の変位\(\delta \phi_B \)の間には

\[\delta \phi_B = \frac{k B_R \phi_R}{1 + k B_R} \] \hspace{1cm} (43)

の関係があり

\[B_R(s) = \frac{s}{s^2 + \omega_s^2} \] \hspace{1cm} (44)

であるから、

\[\delta \phi = \frac{K s}{s^2 + K s + \omega_s^2} \delta \phi_B \] \hspace{1cm} (45)

となる。この式がダニングの項を含んでいることは明瞭である。この関数のポールは\(K \)が正であれば負の実部を持つ複素数となる。この位相ループがビームの振動をダンプさせるので、\(\Delta R \)ループもダンプされることになる。

まず\(\Delta R \)ループのみについて考えるため、一番内側の位相フィードバックは無視して考えてみる。すると\(\delta R \)と\(\delta \omega_{RF} \)の間には

\[\delta R = B_R \delta \omega_{RF} \] \hspace{1cm} (38)

\[\delta \omega_{RF} = k(R - \delta R) \] \hspace{1cm} (39)

で表される関係が成り立つことが分かる。ここで\(k \)はVoltage Controlled Oscillatorおよびアンプ等全てをまとめた伝達関数である。これらの式は簡単に

\[\delta R = \frac{k B_R}{1 + k B_R} R \] \hspace{1cm} (40)

となり、式(37)を用いて書き直すと

\[\delta R = \frac{kb}{s^2 + \omega_s^2 + kb} R \] \hspace{1cm} (41)

となる。もし、このフィードバックループがなければ

X-6
第3章 ビーム制御系の概観

KEK 12 GeV-PS のビーム制御系 [3,4] を例にし、加速電圧および位相制御について見ることにする。概念図を図3に示す。

図3 陽子加速器のビーム制御の概念図

この図で
1: 加速空腔
2: ビーム伝達関数
 Bφ: ビーム位相
 Bω: 周波数
 Br: ビームの軌道
への応答である。
3: 位相ピックアップ
4: 橫 (AR) 方向のピックアップ
5: 電圧制御発信機 (Voltage Control Oscillator)
 空間のRF周波数を変動させる
6: 位相検出器、加速電圧に対するビームの相対位相の変化を検出する
7: ARフィードバックのための誤差アンプ
 φB: ビームバンチのRF電圧に対する位相
 φs: synchronous位相
 φe: 位相のエラー
 φr: ARフィードバックによる補正を足した後の位相

相のエラー
δωvco: VCO出力の周波数変位
Δωprogram: 周波数プログラムにおけるエラー
δωRF: アンプ入力における周波数の変位
Δr: ARピックアップでの中心軌道からのずれである。

陽子加速器の場合、入射時には粒子の速度は速く、加速されるに従って、光速に近づいていく。大型ハドロン計画の3 GeVブースターでは入射時と取り出し時の速度の差は1.7倍、50 GeVブースターでは1.03倍である。このため、空洞の共振周波数を時間とともに変化させる必要がある。また共振周波数を変化させるために使われている磁性体 (フェライト) は温度特性、高周波特性がよく、そのため自動同調装置は重要である。このために必要とされる空洞の構造については別の講義で述べられている。ここでは、空洞の共振周波数の自動同調系について述べる。図4に概念図[3]を示す。空洞に掛かれている電圧と真空管を駆動するための高周波の位相差を検出し、あらかじめプログラムされたバイアス電流の入力パターンに足すことにより、空洞の共振周波数を制御している。

図4 陽子加速器の自動同調回路の概念図

この自動同調のループはフェライトが太いインダクタンスを持つため、広いバンド幅をとることで容易ではない。このため、バンド幅を広げる
ための試みとしてAGSブースター[5]の自動同調回路に用いられているバイアス電流値を使ったフィードバックを紹介する。その概念図を図5に示す。バイアス電流をカレントランスフォーマーによって取り出し、それを入力に加えることにより、負荷のインピーダンスを変換していることが解かる。

第4章 系の安定性

4.1 Phaser Diagram

図5 自動同調回路のバンド幅を広げるためのフィードバックループ

このほかに陽子加速器における重要な制御を担うものとして、AVC(Automatic Voltage Control)ループがある。これは空洞の加速電圧及び周波数の変化によるインピーダンスの変化やビーム自身にによって生じる電圧の変動を補償するための制御ループである。このループについては文献[3]を参照されたい。

図5 自動同調回路のバンド幅を広げるためのフィードバックループ

空洞のギャップ電圧を \(V \)，\(RF \) generator電流を \(I_G \)，ビームが作る電流のうちの基本波成分を \(I_B \) として、これらの関係を Phaser Diagramを使って考えてみる。空洞のインピーダンスを \(Z(j\omega) \) として、

\[
V(j\omega) = Z(j\omega) \cdot I_T(j\omega)
\]

と表される。ここで \(I_T \) は空洞に流れる全 \(RF \) 電流である。即ち

\[
I_T(j\omega) = I_G(j\omega) + I_B(j\omega)
\]

である（図6参照）

図6 加速空洞とビーム、駆動回路の等価回路図

座標系の実軸（正）を電圧の方向と定義しphaserd diagramを描くとすると

ここで、\(\phi_B \) は \(I_B \) の位相角（トランジション以下で
あることに注意）、ϕ_2は空洞インピーダンスのωRFに於ける位相角、ϕ_LはRF generator電流I_Qと電圧Vの位相角である。空洞（のフェライト）での消費電力は

$$P_0=V I_Q / 2$$

で与えられる。また、ビームパワーは

$$P_b=V I_B \sin \phi_B / 2$$

となる。phaser diagramから

$$I_c = \frac{I_0 + I_B \sin \phi_B}{\cos \phi_L}$$

$$= \frac{I_0(1+Y \sin \phi_B)}{\cos \phi_L}$$

$$= 2 \frac{P_0 + P_B}{V \cos \phi_L}$$

（50）

$$\tan \phi_L = \frac{-I_0 \tan \phi_2 - I_B \cos \phi_B}{I_0 + I_B \sin \phi_B}$$

$$= \frac{-\tan \phi_2 - Y \cos \phi_B}{1 + Y \sin \phi_B}$$

（51）

図7 ビーム電流の基本波成分と高周波電圧の位相関係

4.2 伝達関数

ビームローディングの効果について考えるため、図で示したようなフィードバックループをPedersen [6]式に図8の様に微小な変動がgenerator、ギャップ電圧、ビーム電流、チューニングの制御の間をどのように伝達されるか書き出す。

ここでG^Bはビーム電流I_Bから空洞の電圧Vへの伝達関数で、

位相から位相	G_{pp}^B
位相から振幅	G_{pa}^B
振幅から位相	G_{ap}^B
振幅から振幅	G_{aa}^B

への伝達関数である。G^Gはgenerator電流から空洞の電圧への伝達関数で

位相から位相	G_{pp}^G
位相から振幅	G_{pa}^G
振幅から位相	G_{ap}^G
振幅から振幅	G_{aa}^G

問題6 I_Bが空洞の電圧Vに対して$\phi_2 + \pi$だけ遅った方向を向いていることを下の図を参考に考えよ。またパンチが短いときI_Bは平均電流I_{DC}から$I_B=2I_{DC}$で表されることを示せ。
である。G は空調のチューニングの変動($x = \Delta \omega \delta$)から空調電圧への伝達関数で

\[x \text{ から位相 } G_{x \rho} \]
\[x \text{ から振幅 } G_{x \alpha} \]

である。

\[a_\rho(t) = x_\rho \cos \omega_\rho t = \text{Re}[x_\rho e^{i\omega_\rho t}] \quad (55) \]
\[x_\rho << 1 \]

これから $x(t)$ は 5 つの周波数成分を含んだ

\[x(t) = \text{Re}[x_\rho \{e^{i\omega_\rho t} + \frac{x_\rho}{2} e^{i(\omega_\rho + \omega_\alpha)t} + \frac{x_\rho}{2} e^{i(\omega_\rho - \omega_\alpha)t} + j \frac{x_\rho}{2} e^{i(\omega_\rho + \omega_\alpha)t} + j \frac{x_\rho}{2} e^{i(\omega_\rho - \omega_\alpha)t}\}] \quad (56) \]

と表される。空調のインピーダンスを $H(s)$ とすれば

\[y(t) = \text{Re}[x_\rho \{H(j\omega_c) e^{i\omega_\rho t} + H(j(\omega_c + \omega_\alpha)) \frac{x_\rho}{2} e^{i(\omega_\rho + \omega_\alpha)t} + H(j(\omega_c - \omega_\alpha)) \frac{x_\rho}{2} e^{i(\omega_\rho - \omega_\alpha)t} + j \frac{x_\rho}{2} H(j(\omega_c + \omega_\alpha)) e^{i(\omega_\rho + \omega_\alpha)t} + j \frac{x_\rho}{2} H(j(\omega_c - \omega_\alpha)) e^{i(\omega_\rho - \omega_\alpha)t}\}] \times \]

\[\left[1 + \frac{x_\rho H(j(\omega_c + \omega_\rho))}{2 H(j\omega_c)} e^{i\omega_\rho t} + \frac{x_\rho H(j(\omega_c - \omega_\rho))}{2 H(j\omega_c)} e^{-i\omega_\rho t} + j \frac{x_\rho}{2} H(j(\omega_c + \omega_\rho)) e^{i\omega_\rho t} + j \frac{x_\rho}{2} H(j(\omega_c - \omega_\rho)) e^{-i\omega_\rho t}\right] \quad (57) \]

となる。したがって、I_T から V への伝達関数は

\[G_s(j\omega) = \frac{1}{2} \left(\frac{H(j(\omega_c + \omega_\alpha))}{H(j\omega_c)} + \frac{H(j(\omega_c - \omega_\alpha))}{H(j\omega_c)} \right) \quad (58) \]
$G_C(j\omega) = \frac{1}{2} \left(\frac{H(j(\omega_0 + \omega))}{H(j\omega_0)} - \frac{H(j(\omega_0 - \omega))}{H(j\omega_0)} \right)$

(59)

と書くことができる。

問題7 空間のインピーダンスを

$Z(s) = \frac{2\sigma R_s}{s^2 + 2\sigma s + \omega_s^2}; \sigma = \frac{\omega_{RF}}{2Q}$

とする。ここでω_sは空間の共振周波数である。detuneを

$\omega_d = \omega_s - \omega_c = \sigma \tan \phi_s$

として、G_sとG_Cを書き直せ。

問題8 I_TとI_B, I_Lの位相関係からG_GとG_Bを求めよ。

4.3 系の安定性

系が安定であるかどうかは特性方程式を用いて調べることができる。図8からΔRループとquadrupoleモードループを抜いた場合の特性方程式は文献に示されている。系が複雑に近づくほど特性方程式の実数も上がり、方程式も複雑になる。系の安定性を理解するために最も簡単化した、ループのない場合について考えてみよう。図8は図9のようになる。

図9 ループが無い場合

(図9から)

$p_v^* = \tan \phi_s G_{gb} p_b + G_{pp}^B p_b$ (60)

$p_b = B_1 p_v^*$ (61)

となり、これを解いて特性方程式

$1 + B_1(s) (\tan \phi_s G_{gb}^B + G_{pp}^B) = 0$ (62)

が得られる。これに式(36)から

$B_1(s) = \frac{1}{s^2 + \omega_s^2}$ (63)

を代入して

$s^4 + 2\sigma s^3 + (\omega_s^2 + \sigma^2(1 + \tan^2 \phi_s))s^2 + 2\sigma\omega_s^2 s + \sigma^2\omega_s^2(1 + \tan^2 \phi_s - Y \tan \phi_s / \cos \phi_b) = 0$ (64)

となる[6]。ここで$Y = I_B / I_0$である。この系が安定であるためには、この方程式の全ての解が$\text{Re}(s) < 0$であることが必要である。このためには、Routh-Hurwitzの判別法を用いる、これから

$0 < \frac{Y \sin 2\phi_s}{2 \cos \phi_b} < 1$ (65)

が得られる。これからϕ_sは正でなければならない
ことが解かる。すなわちω＞ωcであり、これはここでRobinsonの安定条件

\[R(\omega + \omega_c) > R(\omega_c - \omega_c) \] (66)

も満足する。この領域を図10に示す。

\[b_1 = \frac{a_2 a_5 - a_0 a_3}{a_1} \]

\[b_2 = \frac{a_2 a_5 - a_0 a_3}{a_1} \]

\[c_1 = \frac{b_1 a_3 - a_0 b_3}{b_1} \]

\[\ldots \]

である。この数列の最初の列の係数の符号の変化の数がs平面の右半分にある特性方程式の根の数に一致する。

図10 ビームが不安定になる領域。

問題9 次の特性方程式について判別せよ。

\[C(s) = s^4 + 3s^3 + 4s^2 + 3s + 1 = 0 \]

s^4	1 4 1
s^3	3 3
s^2	3 1
s^1	2
s^0	1

問題10 式（64）を解け

複雑な系について特性方程式を求め、これを解くことは容易ではないため、計算機を使った数値計算も行われている。文献[9]にはその結果が示さ
第5章 ビームローディング対策

5.1 液体抵抗と大出力の4極管

1*10^{13}以上の陽子を加速しているISISとBNLを例にビームローディングに対する対策について考える。ビームローディングに対して系が安定であるようにするには一般にrelative loading、Y = I_B/I_Qを小さくすることが重要である。このために大きく分けて2つの方法が用いられている。その二つとも空洞のインピーダンスを下げることにによるものである。その一は実際の空洞のインピーダンスを下げるものでISISとBNLで用いられている。

ISISでは2.5*10^{13}個の粒子を50Hzで加速し、200マイクロアンペアの電流をユーザーに供給している。この場合リングを回転する平均電流は6A以上になる。ビームの分布がhalf-sine型としても、I_Bは9.9Aである。空洞本体の抵抗値は8kΩで、これまではrelative loading、Yは加速中常に2以上になっていた。このためこれにギャップ直結の液体抵抗（硫酸鋼の水溶液を抵抗体とし、ポンプによって循環冷却している）をつけ、実際の抵抗値をさげて努力が後ろのべるフィードフォワードが導入される前になされた（図11参照）。

この液体抵抗の値が約6kΩあり、合成抵抗は3.4kΩ（空洞当り）となる。通常は液体抵抗の値は余裕をみて1kΩ程度で運転されている。I_BとI_Qを図にしめす。これから、入射付近と取りだし直前にそいで、relative loadingの値は1~2であることが解かる（図12参照）。

図11 加速ギャップに直結された液体抵抗により実際の抵抗値を下げる場合の等価回路図

X-13
図12 ISIS加速器のビーム電流とI₀。ここでI₀はビーム負荷を補うためにフィードフォワードシステムによってアンプから実際に流れる電流である。

BNL[7]では、大電力の4極管にはプレート抵抗（〜0.5 kΩ）が著しく低いものがあることを利用している。例えばブースターの場合、空洞が2つのギャップを持ち、空洞のフェライトを用いた1:2のステップアップによって電圧比で1:4の変換をしているため、ビームからみたプレート抵抗は〜8 kΩとなる。空洞全体の抵抗が約14 kΩ程度とすると、この4極管のプレート抵抗によって空洞のインピーダンスも3分の1近くまで下がったことになる（図13参照）。空洞1台あたりの電圧は2.25（入射付近）〜4.5 kVであるから、I₀は最低4.4〜8.8 Aとなる。一方ビーム電流は平均電流で3（入射時）〜5 Aであり、十分余裕をみて使い方がなされていることがわかる。

図13 4極管プロット抵抗値の低いものを使った時の等価回路図

このように空洞本体以外に液体抵抗または4極管のプレート抵抗を用いて、実際のインピーダンスを下げる手法は有効である。しかし、この手法は実際に電力を大幅に消費し、アンプにも大きな出力の物が必要となる。これらの抵抗値は加速サイクルの間は定数なもので、ダイナミックに変化させることは容易ではない。もし、加速サイクル中にadiabatic captureやビームマニュピュレーションが必要な場合、空洞の電圧をさげることが必要となり、必然的にI₀を減少すると、もっと大幅に空洞のインピーダンスを下げることが必要となる。このようなことをこれまでに述べた手法で行うことは現実的ではない。さらに、ビームから見たインピーダンスのみを下げる方法がこのような場合用いられている。

5.2 フィードフォワード法

ISIS加速器[8]では線形加速器のビームをチョップしていなかったため、adiabatic captureを用いている。このとき、空洞1台あたりの電圧は3.3 kV程度で、最大電圧の7分の1以下である。さらに、ビーム捕獲効率を得るため、入射時にカウンターフェーズを用いて空洞間の位相を180度から0度に変化させ、一回あたりの加速電圧を0 V付近から徐々に上げていく手法を用いている。このため、システム全体ではφ₀=0であっても、各空洞では大きなφ₀（φ₀>0：加速位相、φ₀<0：減速位相）を持っている状態が存在する。この入射付近でのビームローディング対策として、フィードフォワード法が導入された。図14にこの
のフィードフォワード法の概念図をしめす。これはビームの周波数の基本波成分をフィルターによって選別し、これを空調を駆動するアンプのRF入力から引いたものを作り、これをアンプの入力としている。これはすなわち、ビーム電流、I_Bの分だけRF入力、I_Kから引いたことになる。

\[I_G = I_K + I_B \] (67)

\[I_T = I_G + I_B = I_K \] (68)

となり（図12、15参照）、ビーム電流が立ち消えられていることが解る。ここに、このフィードフォワード法によって、式（50）、（51）のような安定条件は変わらない。即ちさらに余分なRF電力は必要ではないことに注意されたい。また、基本波成分のみを抜き出して、ビームおよびgenerator電流との位相関係を合わせることが必要となる。このため、狭い周波数領域でのみ厳しく回路となる。このローバスフィルターのカットオフ周波数は二次の高調波を十分に小さくする様に選ばれている。たとえばISISの場合、1.3 MHzから1.6 MHz（加速開始から約2 ms）の間のみ、このフィードフォワードが作動している。ISIS加速器においては最もビームローダイングの厳しいのは入射付近であり、2 msの間フィードフォワードにより加速できれば、その後は無理なく加速できる。コンピュータ制御された可変の遅延回路によって、加速中エネルギーが高くなるにつれて、遅延時間を減らしビームとの位相関係が正しく保たれるようになっている。コンピューター以外のこれらの回路の大部分は加速器の中心部に位置する大きなホールの中に置かれているのもこの加速器の特長と言える。このフィードフォワードシステムがない場合、空間に大きなビーム電流が誘起され、例えばチーニンググループに用いる空調の電圧の位相（図8におけるPV）が大きくずれることになるためビームが不安定になり、〜4 0マイクロアンペア以上の加速はできなくなる。

![フィードフォワード法によるビーム負荷の補正をしめすphase diagram](image)

5.3 直接フィードバック法

直接RFフィードバックについては既に文献(2,4)でも触れられているので詳しくはそれらを参照されたい。この直接RFフィードバックが行っていることはビームが見られる空間のインピーダンスを下げることである。図16と17に直接RFフィードバックのブロック図と等価回路を示す。
ここで

I_B: ビーム電流
I_G: ゲネレータ電流、$I_G=I_K+I_F$
I_T: 空腔に流れる電流の和、$I_T=I_G+I_B$
I_K: ドライブ電流（=イグ*: フィードバック時）
I_F: フィードバック電流
Z: 空腔のインピーダンス
G: フィードバックループの伝達関数、$G=\beta A$

である。

$$V=Z(I_G+I_B)=Z(I_K+I_B+I_F) \tag{69}$$

であるから、空腔の見掛け上のインピーダンスZ^*は空腔の電圧をループの外から流れ込む電流で割って、

$$Z^* = \frac{V}{I_K + I_B} = \frac{Z}{1 + GZ} \tag{70}$$

である。すなわち、ドライブ電流およびビームから見えたインピーダンスは $1 / (1 + GZ)$ になっていることが解かる。しかし、4極管から見た空腔のインピーダンスは同じループのなかであるから変化していない。これを再びIB とI_G^*（=イグ）から見た下図の様な等価回路で書き直す。

これを更に書き直すと

この図で空腔の電圧Vは
\[V = R \times I_0 = Z \times I_T = Z' \times I_T' \]
\[H \times I_0 = GR \times I_0 = GZ \times I_T \]

より
\[V = Z \times I_T = \frac{Z(I_T + H \times I_0)}{1 + GZ} = Z'(I_T + H \times I_0) = Z'I_T' \]

即ち,
\[I_T' = I_T + H \times I_0 \]

である。これから
\[I_G = I_T' - I_B \]

これを図にすると

図20 直接フィードバックがある場合と無い場合のphasor diagram。*は直接フィードバックがある場合を示す。

のようになる。ここで、I_G*とI_B*、I_T*は著しく大きな電流となるが、これは実際に空洞に流れている電流では無いことに注意されたい。更に、

\[I_0' = \text{Re}(I_T') = \text{Re}(I_T + H \times I_0) = (1 + H)I_0 \]

\[V = R' \times I_0' \]

\[R' = \frac{R}{1 + H} \]

\[Y' = \frac{I_B}{I_0'} = \frac{Y}{1 + H} \]

また空洞の減衰率すなわち空洞のバンド幅(half bandwidth)、\[\sigma = 1/(2RC) = \omega_{RF}/2Q \]（閉ループ）は直接フィードバックにより、

\[\sigma* = (1 + H)\sigma \]（閉ループ）

となる。さて、これまで空洞の流れ電流の位相関係を考えてきた。次に、これを電圧の関係に直して、考えてみることにすると、

\[V = V_s + V_G = V_s' + V_G' \]

\[V_s' = Z' \times I_T' \]

\[V_G' = Z' \times I_G' \]

となり、図21のような関係となる。この図では空洞の電圧Vを基準として実軸に選んだ。この電圧Vは直接フィードバックのある場合も無い場合も同一の電圧でなければならない。空洞のインピーダンスが下がることにより、空洞に誘起される電圧が直接フィードバックにより減少することが解かる。この図の場合、直接フィードバックが無い場合、VとVGの位相は90度近くずれている。このような場合VGの位相の変位がVの電圧の変位に対応し、VGの電圧の変位がVの位相の変位に対応することになる。このような状況は、直接フィードバックにより、VとVGの間の位相角が小さくなることにより改善されていることが解かる。
図21 電圧で見たphasor diagram。ビームが作る電圧VB*が直接フィードバックにより減少している。

5.4 Delayの影響

このフィードバック回路にケーブルや素子による時間の遅れがあったとする。

図22 直接フィードバックに遅延がある場合のブロック図

この時間遅れによる位相ずれの許容量を45度とすれば、閉ループのバンド幅は

\[\sigma^* \leq \frac{\pi}{4 \tau_d} \] \hspace{1cm} (83)

となる[9]。これは閉ループのゲインに制限を与えて、ビームからみたインピーダンスの最小値を与える。

即ち、

\[R^* = \frac{R}{1+H} = \frac{R}{Q} \times \frac{\omega_{RF}}{2\sigma^* \sigma} \geq 4\tau_d f_{RF} \frac{R}{Q} \] \hspace{1cm} (84)

問題11 フィードバックループの時間遅れを1μs、Qを50としたときのインピーダンスの最小値と閉ループのバンド幅を、大型ハドロン計画の主リング（f=3.4 MHz）について答えよ。
第6章 過渡的ビームローディング

大型ハドロン計画の主リングは17個のパケツを持ち、ブースターから4反応を4回入射し、計16個のバンチを加速する。従って、入射時と加速中に過渡的なビームローディングが問題となる。ここで過渡的なビームローディングには二種類あり、入射中の過渡的なビームローディングと加速中の過渡的なビームローディングについて分けて考えることにする(10)。

6.1 入射中の過渡的なビームローディング

入射中の過渡的なビームローディングとはブースターからのバンチが一部のみ入射された状態（4バンチ、8バンチ、12バンチ）の時の特殊なビームローディング現象である。これはビームバンチが空洞を通していきときと空のバンチのみが通過しているときに、基本波成分にモジュレーションが存在し、その分だけ空洞の動作条件が異なることから起きる（図23参照）。もし、ビーム電流が十分小さければ、それによる空洞の電圧の変位も小さく位相ループ等により充分に制御され、その効果は軽減される。

図23 過渡的ビームローディングの直感的説明図（実際には位相フィードバックによって、Igの向きも変わる上に、位相フィードバックはビームの変動よりも速応が速いため正確なものでは無いことを了解された）。一般に空洞の自動同調回路の応答は遅いため空洞のインピーダンスは変わらないとして扱うが、この対策としては、空洞に蓄積されるエネルギーや密度に大きくする方法も考えられる。しかも、ビーム電流が大きく、モジュレーションも大きい場合、通常の位相ループ等はこのモジュレーションに比べて遅いため、更に対策が必要となる。この効果を減らす方法としても直接フィードバックアダプタはビームからみたインピーダンスが大幅に減るためIが減少し、制御可能な範囲内に収めることにできるので有効な手法である。但し、この直接フィードバックによる補正をする時には実際の動作電流を増加させる必要がある。このためBファクトリーではこの方法は用いられていなかった。

6.2 加速中の過渡的なビームローディング
（周期的過渡現象）

入射が終了し、全てのパケツにバンチが入った時点で過渡的なビームローディングは無くなる。
しかし、もしリングの中空のパケットが存在する状態で加速を行なう際には、加速中の過渡的なビームローディングが問題となる。大型ハドロン計画の主リングはニュートリノのための速い取り出しと50 GeVまで加速するために必要なリングの大きさから、17個のパケットの内1パケットが空の状態で加速を行なう事を考えている。この場合、空のパケットがあるために回転周波数の整数倍の周波数全てがビームの周波数成分となる。

\[f = n \cdot f_{\text{pp}} \]

フェライト空洞の場合、それぞれの共鳴周波数からずれた周波数での空洞のインピーダンスは

\[|Z(\Delta f)| = \frac{R_{\text{int}} f_{\text{pp}}}{Q \Delta f} \]

で与えられる。ここで\(\Delta f \)は空洞の共鳴周波数からずれた周波数を示す。ビーム電流が大きく、それによって誘起される電圧の変位が十分に大きければ問題はない。もし、ビーム電流が大きくてその分による電圧の変動が大きい場合には、直接フィードバックまたはフィードフォワードによるビームの安定化について考える必要がある。このビームの変動は通常前にのべた位相ループやアンブリチュードループのバンド幅（\(\sim 1 \ 000 \ \text{kHz} \)）に比べ遅い（\(\sim \text{MHz} \)）ので、これらのループによって安定化することは出来ない。しかし、もし前にのべた直接フィードバックのバンド幅が広く、この空洞の共鳴周波数の問題となる周波数成分をカバーすることができれば、この効果を減らすことができる。前章でのべたようにこのフィードバックループの遅延時間からバンド幅は制限され、例えば1μsの遅延があるとするとバンド幅は200kHzでビームから見たインピーダンスは本来の約4分の1になる。即ち、空洞の共鳴周波数

\[f_{\text{pp}} = 3.4 \text{MHz} \quad : H = 17 \]

に対して

\[\Delta f_{\text{pp}} = 2 \text{MHz} \quad : \Delta H = 1 \]

即ち

\[f = 3.2 \sim 3.6 \text{MHz} \quad : H = 16 \sim 18 \]

に対してビームの見るインピーダンスを下げることができる。これから解けるように、直接フィードバックの遅延時間を減らし、バンド幅とフィードバックゲインを大きくすることが重要である。従ってこのような直接フィードバックをしたにもかかわらず、このフィードバックゲインが十分で直接フィードバックによって安定化できない場合は更に1ターン遅れフィードバックなどの対策を追加する必要がある。この1ターン遅れフィードバックについては文献[2,4]で詳しくのべられている。
第7章 結合バンチ不安定性と空洞の寄生共振対策

通常、結合バンチ不安定性は加速空洞などの高次モードが原因となる。このビーム不安定性については実験で述べられる予定であるので、ここでは寄生共鳴をダンピングさせるための対策について述べる。また結合バンチ不安定性として、ビーム電流が大きくなった場合、ビームの加速モードによって起きる不安定性も考えられる。これについては文献[11,12]を参照されたい。この対策として楕円フィルターを用いたフィードバックが文献[2,4]に説明されている。

高い加速電圧を空洞あたりに得るためには空洞1台あたり2または4個の加速ギャップを持つ構造になる。このような加速空洞はより複雑な構造となり、より複雑な高次モードを持つ可能性がある。このような高次モードはフェライトを用いた加速空洞の場合、次の様なことが原因となる。ISISの空洞（2ギャップ）[13]を例に空洞を等価回路で書いてみる。

図25 2つのギャップを持つ空洞の等価回路図

ここで\(f_{RF} = 1/2 \pi \sqrt{LC_s} \)である。寄生共振の最低次のものはISIS加速器では約11MHzで、この回路図でギャップを繰ぐブスパー（ISISの場合は同軸構造になっている）インダクタンスLsと二つの加速ギャップのキャパシタンス（\(C_s/2 \)）が結合することによる共鳴\(f_{Para} = 1/2 \pi \sqrt{L_sC_s/2} \)で理解されている。

ISIS空洞の場合、この次に問題となる40〜50MHzにおける寄生共鳴は真空管のキャパシタンス（85pF）とロード部の持つインダクタンスによると考えられている。

問題12 ギャップのキャパシタンスをそれぞれ2.18nF、同軸の長さを1.7m、特性インピーダンスを70オームとし、これを1本ギャップを繋ぐのに使われているとする。この同軸の持つインダクタンスを求め、寄生共鳴の周波数を類推せよ。

問題13 45MHzに寄生共鳴があったとして、ロード部のインダクタンスの大きさを求めよ。

このような寄生共鳴を小さくするために、様々な手法が用いられている[14]。図26で解かるように、二つのギャップを繋ぐブスパーの数を1から2に増やすことにより、ブスパーのインダクタンスは半分になるため、寄生共鳴の周波数を1.4倍高くし、より影響の少なくすることができる。また、ブスパーに平行に抵抗を挿入することによりこの寄生共鳴の\(Q \)を下げ、ダンプすることが可能である。

また共振周波数を変えるためにも用いられるバイアス配線はさらに構造を複雑にし、寄生共振を生むことが知られている。大強度の加速器ではこのような構造は避けるべきであろう。
あとがき

以上、大型ハドロン計画シンクロトロンの加速システムに要求される性能を考えながら、陽子シ
クロトロンの高周波システムについて述べた。陽子加速器の場合、加速周波数が変化する、
radiation dumpingが無い、トランジションの下で運転されることもある、加速に用いる周波数が低い
など電子リングと異なる点も多い。こうした点にも配慮したつもりであるが、筆者の勉強不足があ
り、充分に説明できなかった場所も多々あると思う。また、幾つかの重要なことから、例えば速い
繰り返しのシステムに要求される性能（自動同調
ループのバンド幅、文献[13]参照）などについては
説明できなかった。ぜひ、これらの点については
参考文献などももとに調べて欲しい。

最後にこの稿を書くにあたりて議論に貴重な時
間を割いていただいた平松成範氏に感謝します。

参考文献

[1] 神谷幸秀、加速器の原理、OHO’84
[2] 飛山真理、ビームフィードバックによるビーム
の安定化、OHO’94
[3] 三宮重史、陽子シンクロトロンの高周波加速装
置、OHO’89
[4] 絵面栄二、R Fフィードバック、OHO’94
p1906.
Accelerator Conference,p681.
[9] C.Boussard, Proc. CERN school on RF Engineering,
[11] 久保津、ビーム不定性、OHO’91
[12] 赤井和憲、R Fシステム、OHO’94
[13] L.Gradner, Proc. CERN school on RF Engineering,
Accelerator Conference, p1241.