正誤表（自由電子レーザー基礎論）

ページ 左段 2行目：入射光 ⇒ 入力光

・6ページ 左段
2－2節（タイトル）：電子の z 方向速度 ⇒ ウィグラー軸方向の速度成分
2－2節 9行目：入れておく・・・ ⇒ 入れておく・・・
2－2節 14行目：

・8ページ 左段
(3-1-1)式：
\[A_R(z,t) = A_R(z) \left[\cos \left(k_w z - o t + \phi(z) \right) \cdot e_x \right. \]
\[\left. - \sin \left(k_w z - o t + \phi(z) \right) \cdot e_y \right] \]

・8ページ 右段
(3-1-8)式：
\[\frac{dP_z}{dt} = - \frac{e^2}{mc^2 \gamma} \frac{\partial (A_w + A_R)^2}{\partial z} + e \frac{d\Phi}{dz} \]

・9ページ 右段
(3-1-9)式：
\[\Phi_p = - \frac{e}{mc^2 \gamma} A_w A_R \cos \psi \]

・9ページ 右段
(3-1-20)式：
\[A_w = -A_w(z) \left[\cos \left(\int k_w(z) dz \right) \cdot e_x \right. \]
\[\left. + \sin \left(\int k_w(z) dz \right) \cdot e_y \right] \]

・9ページ 右段
(3-1-21)式：
\[B_w = B_w(z) \left[\cos \left(\int k_w(z) dz + b(z) \right) \cdot e_x \right. \]
\[\left. + \sin \left(\int k_w(z) dz + b(z) \right) \cdot e_y \right] \]

・9ページ 右段
(3-1-23)式：
\[b(z) = \tan^{-1} \left(\frac{dA_w(z)/dz}{k_w(z)A_w(z)} \right) \]

・10ページ 右段
4行目：オーバー・ラッパファクター ⇒ オーバーラップ・ファクター

・18ページ 左段
(3-4-41)式：
\[\tilde{a}_R(z) = a_1 e^{ik_1} + a_2 e^{ik_2} + a_3 e^{ik_3} \]

・19ページ 右段
(3-5-5)式の下1行目：(3-4-26)式 ⇒ (3-4-34)式

・20ページ 左段
(3-6-2)式：
\[Z = i \frac{2(2k_w \rho)^3}{K} \int_0^\infty \frac{d\xi}{2} \sin \frac{K(z - \xi)}{2} e^{-iKz} \]

・20ページ 右段
(3-6-3)式：
\[G = \frac{2(2k_w \rho)^3}{K(K^2 - \kappa^2/4)} \left[\left(K_0 - \frac{\kappa}{2} \right)^2 \cos \left(\frac{K_0 + \kappa}{2} z \right) - \left(K_0 + \frac{\kappa}{2} \right)^2 \cos \left(\frac{K_0 - \kappa}{2} z \right) \right] \]

・20ページ 右段
(3-6-4)式：
\[G = \frac{2(2k_w \rho)^3}{K(K^2 - \kappa^2/4)} \left[\left(K_0 - \frac{\kappa}{2} \right)^2 \cos \left(\frac{K_0 + \kappa}{2} z \right) - \left(K_0 + \frac{\kappa}{2} \right)^2 \cos \left(\frac{K_0 - \kappa}{2} z \right) + 2\kappa K_0 \right] \]

・20ページ 右段
(3-6-4)式の下1行目：\[\theta_s = (K_0 \pm \kappa) z / 2 \] ⇒ \[\theta_s = (K_0 \pm \kappa / 2) z / 2 \]

(3-6-5)式の下3行目: spontaneous ⇒ spontaneous
21ページ 右段
(3-7-10)式の下6行目：
\[P_R \approx \rho P_b \quad \Rightarrow \quad P_R \approx 1.37 \rho P_b \]

22ページ 右段
10行目：（本来実線と・・・生じてしまった）
\[\Rightarrow \] 削除

26ページ 左段
左段 (3-9-3)式：
\[\tilde{j}_k(z) = \frac{1}{2\pi \rho} \int f(t(z, \phi)) e^{-i\phi} d\phi \quad \Rightarrow \quad \tilde{j}_k(z) = \frac{1}{2\pi \rho} \int f(t(z, \phi)) e^{-i\phi} d\phi \]

右段 (3-9-12)式：
\[\tilde{\Phi}_p(z) = -\frac{mc^2}{2\varepsilon_0} \tilde{\phi}_R(z) e^{i\phi} \quad \Rightarrow \quad \tilde{\Phi}_p(z) = \frac{mc^2}{2\varepsilon_0} \tilde{\phi}_R(z) e^{i\phi} \]

31ページ 左段
(3-11-13)式の下1行目:
\[1 - \beta_{pf} = \frac{\delta k}{k} > 0 \quad \Rightarrow \quad 1 - \beta_{ph} = \frac{\delta k}{k} > 0 \]

40ページ 左段
(4-2-64)式：
\[L^{-1} \left[\frac{1}{s} \right] = 1 \cdots (z \geq 0) \quad \Rightarrow \quad L^{-1} \left[\frac{1}{s} \right] = 1 \cdots (z \geq 0) \]

47ページ 右段
下から3行目：
\[\left| \hat{\Lambda} \right| = 0.3 >> \hat{\Lambda}_p \quad \Rightarrow \quad \left| \hat{\Lambda} \right|^2 = 0.11 >> \hat{\Lambda}_p^2 = 2.1 \times 10^{-3} \]