目 次

1 はじめに $13-1$
2 なぜ ERL が必要か？ 13－1
2． 1 X 線源の変遷 13－1
2． 2 X 線科学による持続可能な社会の実現 13－2
2．3 ERL における電子ビームの平衡性能 13－2
2．4 ERL の光源性能 I ：短パルス 13－2
2．5 ERL の光源性能II：空間コヒーレンス 13－2
2． 6 ERL の光源性能III：ナノビーム 13－2
2．7 ERL と SASE－XFEL の比較 13－3
3 パルス X 線を用いたポンプ・プローブ計測法 13－3
3．1 ポンプ・プローブ計測法とは 13－3
3．2 蓄積リング型放射光におけるピコ秒パルス X 線発生 13－3
3．3 SASE－XFEL におけるフェムト秒パルス X 線発生 13－3
3．4 ポンプ・プローブ法の時間分解能 13－4
4 スピン転移に起因した超高速分子構造変化 13－4
4． 1 鉄錯体におけるスピンクロスオーバー 13－4
4．2 時間分解 XAFS 法 13－4
4.3 スピンクロスオーバーと構造変化の直接観測 13－5
5 タンパク質の協同的構造ダイナミクス 13－6
5．1 タンパク質の構造変化と機能出現 13－6
5．2 ガス分子の解離をトリガーとしたへモグロビンの構造変化 13－6
5．3 時間分解 X 線溶液散乱法 13－7
5．4 ねじれ運動によるガス分子の放出 13－8
6 超高速光デバイス材料開発 13－9
6．1 光を用いた状態制御 13－9
6．2 ペロブスカイト型マンガン酸化物の光誘起相転移 13－9
6．3 時間分解 X 線回折法 13－10
6．4 光によって励起される隠れた物質相 13－11
6.5 光機能材料開発への貢献 13－11
7 溶液中における化学反応の可視化 13－12
7.1 分子動画による化学反応の実時間観測 13－12
7．2 XFELを用いたフェムト秒 X 線時間分解測定 13－12
7.3 分子動画による分子生成の瞬間の可視化 13－13
7． 4 分子動画撮影法を用いた光エネルギー変換材料に対する設計指針の提案 13－13
8 おわりに $13-13$
参考文献 $13-13$

