目 次

1 はじめに $1-1$
2 基礎的事項 1－1
2． 1 放射線の種類 1－1
2． 2 放射線と物質の相互作用 1－1
2． 3 放射線の測定 1－1
2． 4 放射線物理•計測で用いる基本的な定数 1－2
2． 5 断面積と平均自由行程 1－2
2． 6 相対論運動学 $1-3$
2． 7 原子の構造 1－3
2．7．1 原子の励起と遷移 1－3
2．7．2 イオン化ポテンシャル 1－4
2． 8 原子核 1－4
2．8．1 原子核のエネルギー準位 $1-5$
2．8．2 原子核の壊変 $1-5$
2．8．3 ガンマ壊変 $1-5$
2．8．4 アルファ壊変 $1-5$
2．8．5 ベータ壊変 1－5
$2.8 .6 \quad \beta^{+}$壊変 $1-6$
2．8．7 放射性壊変 $1-6$
2．8．8 自発核分裂 $1-6$
2.9 放射性核種 1－6
2．9．1 壊変系列を作る核種 1－7
2．9．2 壊変系列を作らない核種（長寿命の放射性核種） 1－7
2．9．3 宇宙線によって生成する放射性核種 1－7
2．9．4 放射線源として用いられる放射性同位元素 1－7
2．9．5 壊変図 $1-7$
3 物質中の放射線のエネルギー損失と透過 1－7
3．1荷電粒子のエネルギー損失の機構 $1-8$
3．1．1 クーロン相互作用 $1-8$
3．1．2 荷電粒子と束縛電子の相互作用 1－8
3．1．3 制動輻射 1－9
3．1．4 電離及び励起による阻止能 1－9
3．1．5 阻止能の表式 1－9
3．1．6 荷電粒子の飛程 $1-10$
3．1．7 電子•陽電子のエネルギー損失 $1-10$
3．1．8 電子の飛程 $1-10$
3．1．9 チェレンコフ放射 $1-10$
3． 2 光子と物質の相互作用 $1-11$
3．2．1 光電効果 $1-11$
3．2．2 コンプトン散乱 $1-12$
3．2．3 電子対生成 $1-13$
3．2． 4 電磁カスケード 1－13
3．2．5 光核反応 $1-14$
3．2．6 光子の減弱 1－14
3． 3 中性子と物質の相互作用 1－14
3．3．1 中性子のエネルギー $1-14$
3．3．2 弾性散乱 $1-14$
3．3．3 非弾性散乱 $1-15$
3．3．4 原子核反応のQ値と閾値 $1-16$
4 放射線検出器 $1-16$
4． 1 一般的性質 1－16
4．1．1 エネルギー分解能 1－16
4．1．2 検出効率と立体角 $1-17$
4．1．3 不感時間 $1-17$
4．2 電離作用に基づく検出器 1－17
4．2．1 気体の電離と電荷の収集 1－18
4．2．2 電離箱 1－19
4．2．3 比例計数管 1－20
4．2．4 ガイガーミュラー管（GM管） 1－21
4．2．5 半導体検出器 1－22
4．3 励起作用に基づく検出器 1－26
4．3．1 有機シンチレータ $1-26$
4．3．2 無機シンチレータ 1－28
4．3．3 シンチレータを用いた測定 $1-30$
4．4 中性子検出器 $1-30$
4．4． 1 低速中性子検出器 $1-30$
4．4．2 高速中性子検出器 $1-32$
5 おわりに $1-38$
参考文献 $1-38$

