マイクロ波センシング

1. はじめに

いわゆる電波を利用すれば、通信や放送などの 情報伝送だけでなく、レーダーや大気観測など、 人間の目には見えないセンシングが可能である。 例えば、大気中の水蒸気、酸素、オゾンその他微 量物質が発するミリ波、サブミリ波などの電磁波 を観測すれば、それら物質の存在量、温度、風速 などの環境計測を行うことが可能である。これに よりゲリラ豪雨などの突発気象の予測や気候モ デルの高精度化などに役立つことが期待されて いる。また宇宙空間においては、冷たい塵やガス などからミリ波、サブミリ波が発せられており、 これらを観測することによって星や惑星系、銀河 の誕生のみならず、宇宙の中で生命につながる物 質の形成など宇宙物理学、天文学、惑星科学のお ける重要な問題を次々と解き明かすことが期待 されている。このように、電磁波を用いたセンシ ングは従来見えなかったものを可視化する有益 なツールであり、人類に大きな恩恵をもたらす。 しかしながら、大気や宇宙から発せられるミリ 波、サブミリ波は非常に微弱であるため、高感度 電磁波検出技術が必要である。本稿では、宇宙観 測用電波望遠鏡の高感度受信機を例に、電波セン シングに関連する技術や最新の研究などを紹介 する。

2. 電波の観測技術

2.1. 電磁波検出方法

1931年にアメリカ人無線技術者の K. Jansky が銀河中心からの電波を捉えて始まった宇宙電 波観測は、1960年代にパルサー、クエーサー、宇 宙背景放射の発見、1970年代の星間分子雲の発 見など、爆発的な広がりを見せた。この背景には 真空管に代わってエレクトロニクス技術が進展 し、電磁波検出装置が高性能化したことが伴って いる。1980年代以降になると、SIS 接合などによ る超伝導エレクトロニクス技術や HEMT に代表 される超高速エレクトロニクス技術が加わるこ とによってミリ波、サブミリ波の観測精度が飛躍 的に向上し、星や惑星の形成、宇宙の進化の理解 などが大きく進展した。

ここで言う電磁波の検出方法は、大別すると2 つある。電磁波の性質に粒子性と波動性があるこ とから、電磁波を「光子」として検出する方法と、 「波」として検出する方法がある。前者については 直接検出、後者はヘテロダイン検出という方法で 実現できる。大気や宇宙からのミリ波、サブミリ 波は、光子としてのエネルギーが非常に小さく、 また微弱であるために超伝導技術を用いた高感 度検出が広く使われている。以下に示す。

2.2. 直接検出

超伝導技術を用いた高感度直接検出器は以下 の3つに大別される。超伝導遷移端センサ (Transition Edge Sensor: TES)、マイクロ波力学 的インダクタンス検出器 (Microwave Kinetic Inductance Detector: MKID)、そして超伝導トン ネル接合検出器 (Superconducting Tunnel Junction Detector: STJ) である。

TESは、超伝導体を素子として用い、電磁波の 入射、吸収によって生じる温度変化を、超伝導薄 膜の超伝導状態から常伝導状態への遷移領域を 利用して電磁波を検出する。通常、その遷移幅は mK以内であり、電気抵抗が急激に変化すること から極めて高い電磁波検出感度を実現できる(図 1)。1941年に D.H. Andrews が最初の原理実証 に成功したものの[1]、実用化にはインピーダンス

図2 MKID の動作原理

の低い TES 検出器に整合する増幅器の出現を約 半世紀待たなければならなかった。超伝導量子干 渉デバイス (SQUID) 電流増幅器がそれで、時分 割、周波数分割などの様々な手法で TES 検出器 からの信号を多重化することが可能となってい る。したがって、検出器をアレイにした場合に読 み出し配線数を少なくできるため、大規模な検出 器アレイが可能となる[2]。

MKID は、約15年前に米カリフォルニア工科 大学の J. Zmuidzinas らによって考案された比較 的歴史の浅い電磁波検出器である[3]。超伝導体の 超伝導ギャップエネルギーよりも大きなエネル ギーの光子が入射されると、超伝導電子対(クー パー対)が解離され、このクーパー対に起因する 力学的インダクタンスが変化する現象を利用し たものである。超伝導体を用いた周波数共振回路 (マイクロ波帯) にミリ波やサブミリ波受信用ア ンテナを結合させておき、電磁波入射に伴う共振 特性(振幅、位相)の変化を読むことで高感度の 検出器として動作させる (図 2)。この際、共振回 路毎に、共振周波数を僅かに変えておけば、複数 の共振回路を1本のマイクロ波伝送線路に結合 させることで同時読み出しが可能となる。DC バ イアスも不要なため、大規模なアレイ検出器が容 易に実現可能である。

STJ は、超伝導体・絶縁体・超伝導体 (SIS) の3 層構造からなるトンネル接合を検出素子とする。 理想的な SIS 接合においては、その両方の超伝導 体電極材料のエネルギーギャップを Δ とすると、 温度 T = 0 K の場合にギャップ電圧 $2\Delta/e$ 以下の バイアス電圧領域では準粒子トンネル電流が流 れない。ここに電磁波を照射するとクーパー対が 壊れて生じた準粒子が光子のエネルギーを吸収

してトンネルし、電流が流れる。この際、電流-電圧(*I-V*)特性においてギャップ電圧の両側に *hfle*の間隔で準粒子トンネルによるステップ状の 構造が現れる。これは、光子誘起トンネル (Photon-Assisted Tunneling: PAT)ステップと呼 ばれ、この量子効果による*I-V*特性の変化を利用 して電磁波を検出する(図 3)。この現象は 1962 年に A. H. Dayem と R. J. Martin によって初め て観測され[4]、翌年に P. K. Tien と J. P. Gordon によって理論的に説明された[5]。感度は、量子極 限においては光子1個当たり1個の電子がトンネ ルするため、光子検出が可能となる。しかしなが ら、検出素子毎に配線が必要であるため、大規模 アレイを構成することが困難である。

2.3. ヘテロダイン検出

電波観測において、電波の「波」の性質を利用 すると、信号強度(振幅)だけでなく、位相情報 を得ることが出来る。ミリ波やサブミリ波などの 高周波信号は直接増幅することは難しい。そこで 観測信号と人工的に発生した局部発振波(LO)信 号を非線形素子に通して、数 GHz-10 GHz 程度の 低い周波数に変換する(図4)。これをヘテロダイ ン変換と言う。このようにすることで、信号の 「波」としての位相情報を保つことができる。ただ

図4 ヘテロダイン検波のブロック図

し、量子力学における不確定性原理による「量子 雑音」呼ばれる理論的な感度の限界が存在し、そ の値は *hf/k*^Bである。

変換された信号は、中間周波(Intermediate Frequency: IF)信号と呼ばれ、通常のマイクロ波 技術で増幅される。このヘテロダイン変換に用い られる非線形素子がミキサ(周波数混合器)であ り、金属と半導体とを接合させたショットキーバ リア・ダイオードや、先の直接検出器で述べた SIS 接合、微小な超伝導細線を利用した超伝導ホット エレクトロンボロメータ(HEB)などがある。こ のうち SIS ミキサは、準粒子トンネリングによる *I-V* 特性において半導体では実現不可能な強い非 線形性が現れるため、量子雑音限界に迫る究極の 感度を達成可能である。1980 年代に超伝導 Nb に よる SIS ミキサが電波望遠鏡に搭載されて以来、 その優れた低雑音性能からミリ波・サブミリ波の 観測装置に広く用いられてきた。

ヘテロダイン検出では、直接検出では得ること が困難な非常に高い周波数分解能を比較的容易 に実現できる。これに加え、位相情報を得ること が可能であることから、複数のアンテナで受信し た信号を「干渉」させ、あたかも1つの大きなア ンテナとして動作させることが可能である。これ を「開口合成」と呼び、ケンブリッジ大学の天文 学者 M. Ryle によって考案された。これにより、 彼は 1974 年にノーベル物理学賞を受賞している [6]。その集大成ともいえる人類史上最大の開口合 成望遠鏡が、2013 年に誕生したアタカマ大型ミ リ 波 サ ブ ミ リ 波 干 渉 計 (Atacama Large Millimeter/submillimeter Array: ALMA) である [7]。

2.4. 地上最大の電波望遠鏡 ALMA の概要

ALMA は、国立天文台(NAOJ)を代表とする 東アジア、米国国立電波天文台(NRAO)を代表 とする北米連合、ヨーロッパ南天天文台(ESO) を代表とする欧州の国際共同プロジェクトで、南 米のチリ共和国北部にある標高 5000 m のアタカ マ砂漠に建設した地上最大の電波望遠鏡である (図 5)。この場所は、水蒸気による電波吸収の影 響を受けにくい上、広く平坦なため、合計 66 台 のパラボラアンテナ(直径 12-m アンテナ 54 台 +直径 7-m アンテナ 12 台)を配置するには地球 上で最も適している。観測周波数は、35 GHz(ミ リ波)から 950 GHz(サブミリ波)であり、ヘテ ロダイン検出により観測する。

先に述べたように、各アンテナで受信した天体 からの電波信号を「干渉」させることによって、 66 台のアンテナ群をあたかも1 つの大きな望遠 鏡として動作させているため、「干渉計」と呼ばれ ている。干渉計の性能は、望遠鏡の視力(解像度) で表現され、最も離れたアンテナ間の間隔(基線 長 D) と観測波長 λ の比 (λ /D) で決まる。ALMA は「大型」という名前の通り、最大基線長が18.5 km(東京の山手線サイズ)であり、また観測電波 信号の最小波長は約300 µm となるため、0.01 秒 角の解像度を実現可能とする。これは、高解像度 を誇る「すばる望遠鏡」や「ハッブル宇宙望遠鏡」 の約 10 倍高い解像度となる。感度については、 アンテナの総開口面積、受信機感度、大気透過度 で決まり、やはり既存の電波望遠鏡を1桁以上上 回ることになる。ALMA 望遠鏡の圧倒的に優れた 性能によって画期的な成果を提供している。

図6 南米チリ、標高 5,000 m のアタカマ砂漠で順調に稼働している ALMA 望遠鏡

3. ALMA 搭載受信機

3.1. 受信機システムの概要

66 台の各アンテナには、観測周波数 35-950 GHzの大気の窓に対応する 10 個のバンドに分け たヘテロダイン受信機が搭載されている。天体に おける磁場などに影響される偏光情報を取り出 すなどのために、直交する2つの直線偏波を同時 に観測する。10バンド分の受信機は、4Kまで冷 却可能な3段式ギフォード・マクマフォン (GM) 冷凍機を用いた直径約 1 m の大型クライオスタ ット中で冷却される。図6は、ALMA クライオス タットに装填された受信機群の写真であり、4 K ステージ部が見えている。各受信機の上部には、 15 K 及び 110 K に冷却された赤外線フィルタ、 常温の真空窓が取り付けられる(通常これらはク ライオスタットから取り外されることはない)。 表1に各受信機の雑音温度仕様と開発担当国を示 す。各受信機は、「カートリッジ」とよばれる ALMA で共通の構造体を用いており、受信機単位 でクライオスタット底部から抜き差しできる列 線交換ユニット(LRU)となっている(図9も参 照)。

低い周波数帯のバンド 1、2 については、直接 信号を増幅可能な高電子移動度トランジスタ (HEMT)が用いられることになっており、現在開 発が進められている。HEMT は 4 K までの冷却 が必要でないため、図のように 1 段低い 15 K ス

図 6 ALMA クライオスタットに搭載された 受信機群

表1 ALAM 受信機仕様と開発担当国

バンド	周波数帯域 (GHz)	雑音温度 (K)	受信方式	開発担当国	受信機技術
1	35 – 50	17	SSB	台湾	HEMT
2	67 – 90	30	SSB	未決定	HEMT
3	84 – 116	37	2SB	カナダ	SIS
4	125 – 163	51	2SB	日本	SIS
5	163 – 211	65	2SB	スウェーデン/オランダ	SIS
6	211 – 275	83	2SB	米国	SIS
7	275 – 373	147	2SB	フランス	SIS
8	385 - 500	196	2SB	日本	SIS
9	602 – 720	175	DSB	オランダ	SIS
10	787 – 950	230	DSB	日本	SIS

テージまでの冷却となる。それ以上のバンドについては、ALMAが要求する雑音性能で増幅することが困難なことから、SISミキサが用いられている。

ALMA 受信機では、受信方式として次の3種類 が認められている。1) LO 信号周波数の高周波 側となる上側波帯(USB)と低周波側となる下側 波帯(LSB)を分離して独立に受信する 2SB 方 式、2) どちらかの側波帯を受信する SSB 方式、 そして3)両側波帯を重畳して受信する DSB 方 式がある。2SB 及び SSB 方式のサイドバンド分 離型受信機は、DSB 方式の受信機に比べ観測上の メリットが大きい。図7に DSB 方式と 2SB 方式 での輝線観測例を示す。DSB 方式では、観測した い周波数帯だけでなく不要な周波数帯からも大 気の電波吸収による雑音が入り込み、観測効率の 劣化を招く。2SB 方式は、これを避けることが可 能なため、表1に記載されているように、多くの バンドでサイドバンド分離型受信方式を採用し ている。デメリットとしては回路が複雑な点が挙 げられる。図 8 に SIS ミキサを用いた導波管型

図 8 SIS ミキサを用いた導波管型 DSB 方式 と 2 SB 方式のブロック図

DSB 受信方式と 2SB 受信方式のブロック図を示 す[8]。単純な DSB 方式に比べ、2SB 方式では RF 信号を等分配かつ 90 度の位相差をつけるための 導波管ハイブリッドカプラや、特性の揃った 2つ の SIS ミキサが必要になるなど複雑な構成とな る。動作周波数が高くなると導波管損失が大きく なるなどのため、バンド 9、10 では DSB 方式を 採用している。ただし、高周波帯では水蒸気の電 波吸収による大気雑音が増加することから、観測 効率を上げるために 2SB 方式化が求められてい る。なお、ALMA の仕様では、2SB 方式の受信機 には IF 帯域として 4-8 GHz を要求しているが、 SSB 及び DSB 方式の受信機の場合は、その 2 倍 の 4-12 GHz の帯域となる。

3.2. バンド 10 受信機

バンド 10 は ALMA の最高周波数帯であり、 ALMA の受信機開発の中で、技術的に最難関と言 われていた。受信機は、表1に示す雑音温度仕様 や入力光学特性、偏波特性、振幅・位相安定性、 利得特性など多数の電気的仕様を全て満たす必 要がある[9]。加えて、機械的強度に対しても仕様 が定められている。これは受信機の輸送やアンテ ナ搭載時に掛かる機械的負荷にも耐える構造に なっている必要があるためである。これらの中で 最も厳しい仕様は、やはり世界最高性能を要求す る雑音温度仕様をバンド 10 帯域内(比帯域約 20%)で実現することであった。以下に最新の技

図 9 ALMA バンド 10 アンテナ光学系の概略図 (左) とバンド 10 受信機写真(右)

術を駆使して完成したバンド10受信機について、 雑音性能を左右する SIS ミキサを中心に説明す る。

3.2.1. 受信機構成

図9にアンテナ光学系とバンド10受信機の写 真を示す。直径 12 m のパラボラアンテナの副鏡 からのビームは、受信機を冷却するクライオスタ ットの取り付けられた直径 20 mm の真空窓、110 Kと15Kの赤外フィルタを通して受信機に入射 される。受信機は、英国ラザフォードアップルト ン研究所(RAL)から供給された構造体を用いて おり、4-K、15-K、110-K 冷却プレート(銅また はアルミ製)と、室温の真空シールプレート(ス テンレス製)、そしてこれらを支持する熱伝導率 の低いガラス繊維強化プラスチック(GFRP)製 の円筒形構造体を有する。4-K プレートには、楕 円鏡、偏波分離ワイヤーグリッド、コルゲートホ ーンなどの光学系や導波管 SIS ミキサ、4-12-GHz 帯冷却アイソレータ、4-12-GHz 帯冷却低雑音増 幅器などが配置されている。楕円鏡は、2枚用い ることによって交差偏波の発生を抑えながら、パ ラボラアンテナの副鏡からのビームをコルゲー トホーンに集光する役割を果たす。2枚の楕円鏡 で集光されたビームは、金メッキされた直径 10 μm のタングステン線を 25 μm ピッチで張った自 立グリッドによって、直交する2つの偏波に分離 され(偏波0及び偏波1と呼ぶ)、それぞれの偏

波用のコルゲートホーンに結合される。コルゲー トホーン内部は、幅 56 µm、溝深さ 132-86 µm の 凹凸が 100 以上ある構造を持つ。これにより天文 観測に理想的なガウス効率の高いビーム特性が 得られる。これら光学系は、ガウシアン光学およ び物理光学手法により設計・評価され、仕様を満 たすことが明らかになった[10]。各ホーンには SIS ミキサが取り付けられており、ホーンで受信 した信号を IF 信号に周波数変換する。IF 信号は、 冷却アイソレータを介して、冷却低雑音増幅器で 増幅され、受信機外に取り出される。

観測周波数 787-950 GHz に対する LO 信号の 周波数範囲は 799-938 GHz となり、110 K プレ ートに設置された周波数9逓倍器で発生させる。 これを「ホーン-to-ホーン結合」という準光学的手 法で 4 K に設置した SIS ミキサーブロックに導 入する[11]。すなわち、9 逓倍器と SIS ミキサー ブロックのそれぞれに同一のダイアゴナルホー ンを集積し、逓倍器側のホーンから放射された LO 信号を 2 枚の同一の楕円鏡でビームを整形し てSISミキサ側のホーンに空間的に高効率で結合 するのである。LO信号が通る途中の15Kプレー トには、赤外線フィルタと準光学減衰器が設置さ れている[12]。SIS ミキサーブロックには、LO 信 号を RF 信号に弱く結合させるために、13 dB 導 波管方向性結合器が集積化されており、両信号は SIS ミキサチップまで達する[13]。

3.2.2. バンド 10 SIS ミキサ

図 10 に開発した SIS ミキサチップの電子顕微 鏡写真を示す。i 線ステッパーなどを用いること によって作製精度を高めている[14]。2 つの Nb/AlOx/Nb 接合に NbTiN/SiO₂/Alマイクロスト リップ線路が集積化されている。先に述べたよう に理想的な SIS 接合では、その両方の超伝導体電 極材料のエネルギーギャップをΔとすると、2Δ/e の電圧(ギャップ電圧)において急激に準粒子ト ンネル電流が流れ、強い非線形性が現れる。ミリ 波やサブミリ波帯の電磁波が入力されると、ギャ ップ電圧の両側に hf/e の間隔で、PAT による準粒 子ステップが現れるため、この量子効果を非線形

図 10 バンド 10 受信機用に開発した SIS ミ キサチップの走査型電子顕微鏡写真

ダイオードミキシング理論に取り入れた結果、有限の変換利得と量子雑音限界に迫る感度を達成でき[15]、その周波数限界はおよそ $f = 4\Delta / h$ までとなることが示された[16]。これは、SIS 接合の非線形性が保たれる電圧範囲が $4\Delta / e$ のためである(I-V特性が正負の電圧に対して対称のため)。従って、理想的な I-V特性が得られるNb/AlOx/Nb 接合を用いたミキサの動作周波数限界は約 1.4 THz となり、バンド 10 受信機に十分適用可能であることがわかる。

一方、SIS 接合の絶縁層の厚さは、量子力学的 なトンネル効果が起こるほど非常に薄いため(1-2nm 程度)、単位面積当たりの静電容量が非常に 大きい。例えば Nb/AlOx/Nb 接合の場合には 60-90 fF/µm²程度である。1 µm²程度の小さな接合 を用いても、その接合容量によってサブミリ波信 号の大部分は短絡され、効率的にミキシングが出 来ない。そこで図 10 のように伝送線路による同 調回路を形成し、誘導性負荷により接合容量を除 去する。また、インピーダンス整合回路にも利用 する。ALMA バンド9(600-720 GHz) までは、 極めて低損失な Nb/SiO₂/Nb マイクロストリップ 線路を用いることが可能である。しかし、周波数 が Nb のギャップ周波数以上となるバンド 10 で は、フォトンによるクーパー対の破壊が起こり、 急激に損失が増大する。このため、従来用いられ てきた Nb 技術を伝送線路に利用することができ ない。

この問題を克服するために、我々は Nb より臨 界温度(Tc)の高い金属系化合物超伝導体の NbTiN に着目した。窒化ニオブ系超伝導体を古く から研究してきた情報通信研究機構と協力して、 NbTi ターゲットを用いた反応性 DC マグネトロ ンスパッタ法による高品質薄膜の作製方法を検 討した。超伝導特性に重要なパラメータである Tc と 20 K での導電率 (p20K) に着目し、ミキサチッ プに用いる石英基板上で両者が同時に最も高く なる薄膜作製条件を見いだした。この結果、厚さ 約 300 nm の NbTiN 薄膜に対し、約 15 K の Tc と 1 x 10⁶ Ω⁻¹m⁻¹ 程度のρ20K を有する特性を得 た。結晶性や組成比の分析などから NbTiN 薄膜 中の窒素量が超伝導特性に重要な役割を果たし ていることが分かってきた[17]。この優れた NbTiN 薄膜を伝送線路の両電極に用いれば、超低 損失伝送線路を構成できる。しかし、本ミキサの ように NbTiN 薄膜に直接 Nb 接合を接続する場 合には、両者のエネルギーギャップの大きさの違 いによってポテンシャル井戸が形成され、トンネ ルしてきた準粒子が閉じこめられる[18]。この非 平衡状態が等価的に接合の温度上昇をもたらし、 低雑音動作を妨げる。そこで、伝送線路の一方を 低損失な常伝導金属の Al にし、この問題を回避 している。

もう一つの課題は、バンド 10 帯域で確実に動 作させるための同調回路設計であった。量産に向 けて動作マージンを広げるために回路の最適化 は必須であるが、このためには回路に用いる伝送 線路の特性インピーダンスや位相速度などを正 確に把握している必要がある。伝送線路パラメー タは NbTiN 膜の表面インピーダンスに強く依存 する。これまでの設計では、薄膜のTcから経験的 にギャップ周波数を仮定し、dirty limit に対する Mattis-Bardeen (M-B) 理論を用いた複素導電率 から算出していた[19]。我々は、設計精度を高め るためにテラヘルツ時間領域分光法(THz-TDS) を用いて NbTiN 薄膜の複素導電率を実験的に求 めた。用意したサンプルは、膜厚 45 nm の NbTiN で、厚さ1mmの石英基板上に成膜している。薄 膜の T_C、20 K での直流抵抗率 p20K は、それぞれ

図 11 透過型 THz-TDS で測定した NbTiN 薄 膜の複素導電率。挿入図は常伝導状態と超伝導 状態での時間領域波形を示す。

12.1 K、117 μΩcm であった。このサンプルを透 過型 THz-TDS 装置に取り付け、ヘリウムガスに よる間接冷却によって5Kまで冷却した。図11 の挿入図に温度5K(超伝導状態)と14K(常伝 導状態)での時間領域波形を示す。常伝導状態を リファレンスとして、超伝導状態の複素導電率 $\sigma(\omega) = \sigma_1(\omega) - j\sigma_2(\omega)$ を求めた[20]。実部 $\sigma_1(\omega)$ におい て、約1THzに明瞭な超伝導ギャップ(2A)が観測 されることから、我々の NbTiN 膜の超伝導ギャ ップと転移温度の関係は、 $2\Delta/k_{\rm B}T_{\rm C} \approx 4.0$ となる。 これは、これまで知られていたエピタキシャル成 長の NbN (≈ 4.2) より小さく[21]、BCS 理論に よる 3.52 よりも大きな値であった。また虚部 σ2(ω)においては、同図に示されるように従来設計 に用いてきた M-B 理論と一致しないという新た な知見が得られた。我々はこの差異をモデル化す るために、電子系の有限の散乱時間 rs を導入した 拡張 M-B 理論[22]によってフィッティングを試 みた。その結果、図に示すように、 πs=15 fs で最 適解が得られた。設計においては、ミキサで用い る厚さ 300 nm 程度の薄膜の Δ (=4 $k_{\rm B}T_{\rm C}/2$)、 $\rho_{20\rm K}$ 、 πから複素導電率を求めている。さらに、複素導 電率から導出した表面インピーダンスを電磁界 シミュレータに取り込み、同調回路部における2 つのSIS接合間に流れる高周波電流分布による余 剰インダクタンスを考慮した回路設計を行って

いる[23]。設計で仮定した Nb/AlOx/Nb 接合の臨 界電流密度は 10 kA/cm² であり、これは国立天文 台の標準作製プロセスで理想的な *I-V*特性が得ら れる上限の値となる。

3.2.3. 受信機性能

製造した 73 台のすべての受信機で、性能評価 試験が行われた。評価試験装置の詳細については 文[9]を参照されたい。本稿では、最も達成が困難 とされた雑音温度性能について記述する。図12に その評価システムのブロック図を示す。受信機は ALMA クライオスタットと同じ3段GM 冷凍機 で冷却される。各温度ステージは、ヒーターによ ってコントロールされている。RF 信号源は、室 温および液体窒素に浸されたテラヘルツ帯電波 吸収体 (TK-RAM) [24] を用いている。この信号 がテフロン反射防止膜付石英真空窓を通り、110 K シールドに設置された厚さ 0.13 mm の Mupor と厚さ 0.56 mm の Gore-Tex の赤外線フィルタ、 そして 15 K シールドに設置された厚さ 0.25 mm の Mupor の赤外線フィルタを通って、受信機に 入力される。LO 信号に用いる源振は、14.8-17.4 GHz を発生するイットリウム鉄ガーネット (YIG)発振器であり、この出力を能動周波数6逓 倍器と100 GHz 帯増幅器によって、出力100 mW 程度を持つ 88.8-104.2 GHz の信号を得る。この 部分は米国 NRAO で開発され、室温カートリッ ジアセンブリ(WCA)と呼ばれる。WCAの出力

図 12 受信機雑音性能試験装置のブロック図

は受信機の真空導波管フランジから入力され、受 信機内の断熱用の内面金メッキ薄肉ステンレス 導波管などを経て、110 K ステージに設置された 周波数 9 逓倍器に導入される。ここで 20-30 µW 程度の電力を持つ 799-938 GHz の LO 信号に変 換され、準光学的に SIS ミキサ部に入力される。

図 13 に動作温度 4 K におけるバンド 10 受信 機のヘテロダイン応答特性例を示す。810 GHzの LO 信号を入力しないときには、I-V特性上に Nb 接合特有の約 2.65 mV のギャップ電圧が観測さ れる。接合品質の指標であるギャップ電圧以下で の抵抗値(Rsg)とそれ以上の抵抗値(RN)の比 (Rsc/RN)は 20 以上あり、NbTiN 薄膜上でも Nb/AlOx/Nb 接合が理想的に形成されていること がわかる。臨界電流密度は約11 kA/cm²であり、 設計値に極めて近い。LO を入力したとき、量子 効果である PAT による電流ステップが明瞭に観 測される。810 GHz に相当するステップ電圧幅は 約3.3 mV であり、負のギャップ電圧側からの電 流ステップが重畳している影響のため約0.65 mV にステップが現れている。295 K と 77 K の電波 吸収体からの黒体輻射を受信機に入力したとき に得られる IF 出力の比を用いて(標準的な Y因 子法)、受信機の雑音性能を評価した。受信機の真 空窓などの入力光学系の損失をすべて含む受信 機雑音温度は125Kに達し、この値は量子雑音の 3倍程度に相当する。

同様の方法で、73台すべての受信機の雑音温度 の周波数特性が測定された。受信機あたり2個の

図 13 バンド 10 受信機のヘテロダイン応答 特性。ジョセフソン電流は印可磁場によって抑 圧されている。

図 14 これまで報告されている代表的な SIS 受信機の雑音温度性能と ALMA の各バンドの SIS 受信機に対する雑音温度仕様。典型的な半 導体ショットキーダイオードミキサの性能も 示す。点線は量子雑音の3倍を示している。各 研究機関のカッコ内はミキサチップの主な配 線材料を示す。

SIS ミキサが搭載されているため、146 個の SIS ミキサを測定したことになる。この結果、我々の 開発したすべての受信機が、これまで実現が困難 とされた ALMA の仕様に適合した。図 14 は、こ れまで報告されている SIS 受信機雑音温度[25-28]と ALMA で課されているバンド 3 から 10 の 雑音温度仕様(DSB 方式換算)であり、これにバ ンド 10 受信機 73 台の測定で得られた各測定周 波数での最小雑音温度をプロットした。我々の開 発した受信機は、他の低い周波数帯の全 Nb 受信 機と同様に、量子雑音の3倍程度にまで到達して おり、世界最高性能を誇る。この結果は、Nb のギ ャップ周波数を超えるテラヘルツ帯において伝 送線路の NbTiN が極めて低損失であり、そして Nb/AlOx/Nb 接合が理想的に量子雑音限界近くで 動作していることを示唆している。

ただし、800 GHz 付近の低周波数領域で受信機 雑音の増加傾向があることわかり、この原因を追 究すると WCA のミリ波帯シンセサイザからの過 剰雑音によるものであることが明らかになった。 図 15 に 100 GHz 帯ガン発振器を用いた場合と比 較した例を示す。低周波数領域において、シンセ

図 15 受信機雑音温度の IF/LO 周波数依存性 (上:WCA を用いた場合、下:ガン発振器を用 いた場合)。丸で示された WCA の過剰雑音は ガン発振器では見えない。

サイザを用いた場合に発生するスポット的に雑 音温度が高い箇所(図9上の丸で示した箇所)が、 ガン発振器の場合には確認されない。バンド10受 信機はすでに ALMA 望遠鏡に搭載され、観測が 始まっており、現時点でこの過剰雑音は特に問題 となっていないが、将来的に改善が必要と考えて いる。

4. 最新の研究紹介

最新技術を駆使した ALMA 望遠鏡は、天体からの電波の偏波,強度,周波数,位相情報を高解像度・高感度で観測するという、人類がこれまで持ち得なかった天体の情報取得を可能にした。これにより、次々と新たな科学的成果が生み出され

ている。一方で、次世代の望遠鏡を見え据えた基 礎検討を進めておかなければならない。その一つ が既存受信機の性能向上である。前項で示したよ うに、ALMA バンド 10 では LO 系からの過剰雑 音を要因とした性能劣化があり、さらなる低雑音 化は課題の一つである。また、観測が進むにした がって、既存装置では不可能な新たな観測要求が 出てくるのは当然の流れである。例えば、現在の 干渉計の弱点である「視野の狭さ」を克服するた めの広視野化が挙げられる。これには、受信機を マルチビーム化することが提案されている。ま た、同時受信周波数帯域の広帯域化や受信周波数 の高周波化も必須の課題である。我々はこのよう な今後の ALMA のさらなる性能向上や高機能化 を目指して基礎開発に着手しており、その一部を 紹介する。

4.1. バランスドミキサ

バランスドミキサはテラヘルツ帯で顕著となる LO 系由来の課題を解決するのに有効なミキサ 構成であるとされる。すなわち、先に述べた LO による過剰雑音を抑圧できると同時に、シングル エンドミキサに対して LO 電力が1桁程度少なく てよいなど有利な点を持つ。そこで我々はバンド 10 で培った技術を用いてバランスド SIS ミキサ の機能実証を目的とした実験を 900 GHz 帯で実 施した[29]。本実験でのバランスド SIS ミキサ実 験系の構成を図 16 に示す。バランスドミキサに

図 16 バランスド SIS ミキサ実験ブロック図

は、RF 帯での低損失広帯域な 3-dB 90° ハイブ リッドカプラ、性能の揃った2つのSIS ミキサ、 2つのアイソレータ、IFカプラが必要となり、700 GHz 以上の周波数帯ではバランスド SIS ミキサ の実証例はなかった。これは低雑音な SIS ミキサ の実現が困難であっただけでなく高精度な導波 管回路の作製やその評価が難しかったことにも 由来している。本研究では、SIS ミキサとしてバ ンド 10 受信機の量産で用いた標準的なものを用 いた。バランスド SIS ミキサを構成するコンポー ネントは 4 K ステージ上に置かれる。IF 出力は 常温のアンプで増幅した後にパワーメータを用 いて測定した。LO 電力は、100 GHz 帯のガン発 振器出力を源振として用い、WR-10 導波管(1.27 mm×2.54 mm) を用いてクライオスタットの 4 K ステージ上に置かれる 3×3 逓倍器に入力して 9 逓倍することによって 900 GHz 帯の出力を得 た。LO 電力は WR-1.2 導波管を用いた 90°ハイ ブリッドカプラを介して 2 つの SIS ミキサに入 力した。

図 17 に Y因子法によって測定した受信機雑音 温度特性を示す。全帯域で 350 K以下、RF 光学 損失と導波管損失を補正した雑音温度はほぼ 200 Kを切る性能を得た。本補正値はコンポーネント の個別評価による実測に基づく値である。当結果 は当周波数帯のバランスドSISミキサとして初め ての結果であり、ALMA バンド 10 で使用されて いるシングルエンドミキサと同等の低雑音性能

図 17 バランスド SIS ミキサの受信機雑音温 度および LO 雑音抑圧比。雑音温度(補正有り)、 RF 真空窓による反射損失と導波管の伝送損失 の実測値に基づいて補正している。

図 18 ハイブリッドカプラを内蔵したミキサ ブロックの光学顕微鏡写真。(a)ミキサブロッ ク断面 (E面)。(b)カプラ部の拡大図

である。また、バランスド SIS ミキサの性能とし て重要な LO 雑音抑圧比(LNR) は典型的に 20 dB 程度が得られている。これは、シングルエンド ミキサと比べて 5-10 倍程度 LO 雑音の高い抑圧 効果を有するということを示している。この結果 をもとに、図 18 に示すようなハイブリッドカプ ラ、2つの SIS ミキサ、バイアス回路、IF パワー 結合器を一体化させたバンド 10 バランスド SIS ミキサを開発し、雑音温度特性も補正無しで ALMA 望遠鏡要求スペックを満たす結果を得た [30]。したがって、前項で述べた LO 系由来の受 信機性能劣化は、本ミキサを用いることによっ て、受信機の性能改善が可能であるとの見通しを 得た。また、本ミキサはスケールダウンすること によって LO 電力の不足が懸念される 1 THz 以 上でも応用可能である。

4.2. マルチバンド型受信機

既存の受信機においては、同時観測可能な帯域 は受信機の IF 帯域に制限されている。例えば ALMA バンド 10 では、8 GHz である。天体から の情報は広帯域に渡っているはずで、現在はその うちのほんの一部しか観測できていない。すべて 同時観測できれば、観測効率が飛躍的に上がる。 受信機の同時観測周波数帯域を広帯域化するた めに、観測帯域をいくつかの帯域に等分割するフ ィルタバンクを用いてマルチバンド化し、それら を同時に観測することによって高速化を図る画 期的な手法の実現を目指している[31]。図 19 に概

図 19 マルチバンド型ヘテロダイン受信機の 概念図

念図を示す。各周波数帯の信号は、それぞれ基本 波ミキサによって低い IF 帯に高効率で周波数変 換される。我々は、そのキーコンポーネントの1 つであるフィルタバンクを実現するため、導波管 回路により開発を進めている。

マルチバンド型受信機の入力回路としてのフ ィルタバンクの特性は、反射損失および通過損失 が低く、チャネル間の周波数ギャップによる信号 損失をできるだけ抑える必要がある。また、フィ ルタバンクの出力部分にいかなる負荷がついた としても他のチャネルに影響を与えない、チャネ ルの高い独立性が求められる。そこで、ハイブリ ッドカプラを用いたフィルタバンクを開発した。 90°ハイブリッドカプラとバンドパスフィルタ をそれぞれ2つずつ用いた構成となっている。原 理実証用の本試作では、405-480 GHz を 25 GHz 間隔で3つの周波数帯に分割する導波管型フィル タバンクを設計した。すなわち、Ch. 1:455-480 GHz, Ch. 2: 430-455 GHz, Ch. 3: 405-430 GHz である。導波管サイズは WR2.2 (280 µm x 560 µm)を用いた。

図 20 に製作したフィルタバンクと通過特性の 評価の様子を示す。当コンポーネントは 2 つ割り で製作されており、組み立て時一辺 20 mm の立 方体で、入出力部 4 面は UG フランジとなってい る.前述と同様の方法で測定したフィルタバンク の Sパラメータを図 21 に示す。また、図 17 に前 述のフィッティングパラメータを用いて計算し た電磁界解析ソフト HFSS によるシミュレーシ ョン結果を示す。S21、S31、S41の結果から、各チ

図 20 導波管フィルタバンクの VNA 評価の 様子

ャネルは 25 GHz 間隔で設計通りに分割されてい ることがわかる。これらの測定値は設計値に対し て 2 GHz 以内、少なくとも 0 から-40 dB のレベ ルにおいてシミュレーションと非常によく一致 していることがわかる。また、*S*11 についても所望 の帯域において-15 dB 以下となっていることが 確認できた。これらから当フィルタバンクはほぼ 設計通りに動作し、マルチバンド受信機システム の RF フィルタ部に有用であると考えられる。各 ミキサには周波数の異なる局部発振波が必要と なる。このために、通信技術を利用した高精度光 周波数コムによるサブミリ波帯周波数コム発生 の開発に着手している。

5. まとめ

本稿では、ミリ波やサブミリ波、いわゆる電波 の高感度検出技術について紹介した。ALMA 望遠 鏡に見られるように、電波センシング技術は、人 間の目には見えない被測定物の情報を大量かつ 高速に取得する方向で発展してきた。一方、電波 という媒体に情報を乗せる無線通信技術も、昨今 の無線インターネットやスマートフォンの急速 な普及に後押しされているように、大容量・高速 化に向かっている。このような共通点があること を両研究分野で認識することで、学術領域を超え た研究連携が進み、結果として全く新しい観測装 置や無線装置が実現することを期待している。

図 21 Sパラメータの測定結果

謝辞

本セミナーのために資料をご提供いただいた 国立天文台の小嶋崇文氏、藤井泰範氏、大島泰氏、 松尾宏氏、デルフト工科大学の遠藤光氏、情報通 信研究機構の落合啓氏、その他 ALMA の関係諸 氏に深く感謝いたします。

参考文献

- D. H. Andrews, W. F. Brucksch, W. T. Ziegler, and E. R. Blanchard, Rev. Sci. Instrum., 13, 281 (1942)
- [2] K. D. Irwin and G. C. Hilton, in Cryogenic Particle Detectors, Topics in Appl. Physics, Vol 99, Editor: Christian Enns, Springer Verlag (2005)
- [3] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature 425, 817 (2003)
- [4] A. Dayem and R. J. Martin, Phys. Rev. Lett. 8, 246 (1962)
- [5] P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963)
- [6] M. Ryle, Science 188, 1071 (1975)
- [7] <u>http://alma.mtk.nao.ac.jp/j/</u>
- [8] S. Claude, C. Cunningham, A.R. Kerr, and S.-K. Pan, ALMA Memo 316 (2000)
- [9] Y. Fujii, A. Gonzalez, M. Kroug, K. Kaneko, A. Miyachi, T. Yokoshima, K. Kuroiwa, H. Ogawa, K. Makise, Z. Wang, and Y. Uzawa, IEEE Trans. THz Sci. Technol. 3, 39 (2013)
- [10] A. Gonzalez, Y. Uzawa, Y. Fujii, K. Kaneko, Infrared Phys. And Technol. 54, 488 (2011)

- [11] A. Gonzalez, Y. Uzawa, Y. Fujii, K. Kaneko, and K. Kuroiwa, IEEE Trans. THz Sci. Technol. 1, 416 (2011)
- [12] A. Gonzalez, Y. Fujii, K. Kaneko, and Y. Uzawa, Proceedings of the Asia-Pacific Microwave Conference 2011, 1977 (2011)
- [13] T. Kojima, K. Kuroiwa, Y. Uzawa, M. Kroug, M. Takeda, Y. Fujii, K. Kaneko, A. Miyach, Z. Wang and H. Ogawa, J. Infrared Milli. THz Waves, 31, 1321 (2010)
- [14] M. Kroug, A. Endo, T. Tamura, T. Noguchi, T. Kojima, Y. Uzawa, M. Takeda, Z. Wang, and W.-L. Shan, IEEE Trans. Appl. Supercond. 19, 171 (2009)
- [15] J. R. Tucker: IEEE J. Quantum Electron. 15, 1234 (1979)
- [16] M. J. Feldman: Int. J. IR&MM Waves 8, 1239 (1987)
- [17] K. Makise, H. Terai, M. Takeda, Y. Uzawa, and Z. Wang, IEEE Trans. Applied Supercond. 21, 139 (2011)
- [18] B. Leonea, B. D. Jackson, J. R. Gao, and T. M. Klapwijk, Appl. Phys. Lett. 76, 780 (2000)
- [19] D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958)
- [20] Y. Uzawa, Y. Fujii, A. Gonzalez, K. Kaneko, M. Kroug, T. Kojima, K. Kuroiwa, A. Miyachi, S. Saito, and K. Makise, Physica C 494, 189 (2013)
- [21] Z. Wang, A. Kawakami, and Y. Uzawa, J. Appl. Phys. 79, 7837 (1996)
- [22] D. Karecki, Phys. Rev. B 25, 1565 (1982)
- [23] W.-L. Shan, S.-C. Shi, T. Matsunaga, M. Takizawa, A. Endo, T. Noguchi, and Y. Uzawa, IEEE Trans. Appl. Supercond. 17, 363 (2007)
- [24] Thomas Keating Ltd, http://www.terahertz.co.uk/
- [25] L. Olssen, S. Rudner, E. Kollberg, and C. O. Lindstrom: Int. J. IR & MM Waves, 4, 847 (1983)
- [26] A. R. Kerr, S.-K. Pan and J. Webber: MMA Receivers: SIS Mixers, MMA Project Book (1999)
- [27] W.-L. Shan, S. Asayama, M. Kamikura, T. Noguchi, S.-C. Shi and Y. Sekimoto: IEICE Trans. Electron. E89-C, 170 (2006)
- [28] C. F. Lodewijk, E. van Zeijl, T. Zijstra, D. N. Loudkov, F. P. Mena, A. M. Baryshev, and T. M. Klapwijk: Proc.19th ISSTT, 86 (2008)
- [29] 小嶋崇文, 藤井泰範, 鵜澤佳徳, 低温工学 49, 343(2014)
- [30] Y. Fujii, T. Kojima, A. Gonzalez, S. Asayama, M. Kroug, K. Kaneko, H. Ogawa, and Y. Uzawa, Supercond. Sci. Technol. 30, 024001 (2017)

[31] T. Kojima, A. Gonzalez, S. Asayama, and Y. Uzawa, IEEE Trans. THz Sci. Technol. 7, 10 (2017)