パルス電磁石電源

1	はじ	かに・・・・・	4 −1
2	J-PA	RC RCS 加速器 ·······	4 – 1
	2.1	RCS とは	4 - 1
	2.2	ビームパワーと課題	4 – 1
	2.3	RCS の電磁石	4 – 2
	2.4	RCS のこれまでとこれから	4 – 3
3	入射	ベンプシステム	4 – 3
	3.1	システムの概念と大強度ビームの生成	4 – 3
	3.2	入射バンプ軌道	4 -4
	3.3	ペインティング入射	4 – 5
4	基本	安計 · · · · · · · · · · · · · · · · · · ·	4 - 7
	4.1	ビーム領域と電磁石の大きさ	4 - 7
	4.2	精度の考え方	4 - 7
	4	2.1 電磁石と電源の精度	4 - 7
	4	2.2 ビームとの取り合いで決まる精度	4 - 7
	4	 2.3 設計と製作の精度	4 - 8
	4.3	パルス電磁石電源の設計の考え方	4 -9
	4.4	入射バンプシステムの構成	4 -10
	4.5	設計ツール	4 −10
5	電磁	5	4 −12
	5.1	水平シフトバンプ電磁石	4 −12
	5	1.1 磁極構造	4 −12
	5	1.2 電流と電圧	4 −12
	5	1.3 インダクタンス	4 -13
	5	1.4 渦電流	4 −14
	5	1.5 コイル	4 -15
	5	1.6 熱設計	4 -18
	5	1.7 絶縁碍子と耐放射線性	4 −21
	5	1.8 耐電圧設計	4 −22
	5	1.9 磁場測定	4 −23
	5	1.10 バンプ軌道の歪み補正	4 −24
	5	1.11 3次元解析計算	4 −25
	5.2	水平・垂直ペイントバンプ電磁石・・・・・・	4 −27

6 電源	4 - 28			
6.1 電源システム	4 -28			
6.2 チョッパ方式	4 -28			
6.2.1 回路構成	4 -28			
6.2.2 電流リップルの問題	4 -29			
6.2.3 スイッチングノイズ	4 -29			
6.2.4 ケーブルインダクタンス	4 -30			
6.3 転流方式	4 -30			
6.3.1 回路構成	4 -30			
6.3.2 電磁ノイズとリンギングの抑制	4 -32			
6.4 波形比較	4 -33			
7 新パルス電源	4 - 34			
7.1 新パルス電源の開発	4 - 34			
7.2 次世代パワー半導体	4 -35			
7.3 LTD 回路	4 - 35			
7.3.1 基本特性	4 - 35			
7.3.2 新キッカー電源回路	4 -35			
7.3.3 開発経過報告	4 -36			
8 まとめ	4 - 37			
9 さいごに	4 - 37			
参考文献·····				