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1.3-GHz Superconducting 
Radio Frequency Cavity Stress 

and Buckling Analysis 

1. Cryomodule Assembly 

The International Linear Collider (ILC) is an 
electron-positron collider accelerator, that 
requires approximately 7800 1.3 GHz Niobium 
9-cell cavities to attain 250 GeV centre-of-mass 
energy and is extendable up to 1 TeV [1, 2]. The 
ILC will be a 31 km long linear collider whose 

major sub-system will include photocathode DC 
gun, polarized positron source, electron and 
positron damping rings, beam transport from 
damping rings to the main linacs, two 11 km 
main linacs utilizing 1.3 GHz 9-Cell 
superconducting radio frequency cavities (SRF) 
operating at an average gradient of 31.5 MV/m, 
two beam delivery systems each 2.2 km long 
and cryogenic plants to cool down the 
cryomodules. The 7800 cavities will be housed 
in approximately 850 cryomodules, which are 
roughly 12.65 m long [2].  

Fig. 1 Example of cryomodule cross-section for FNAL and KEK (Top) [3]; Different types of 
cryomodules, ILC and Eu-XFEL design [2] (below) 

-



９-２－ 2

There are two types of cryomodules for ILC: a 
Type A module with nine 1.3 GHz nine-cell 
cavities and Type B with eight nine-cell cavities 
and one superconducting quadrupole package 
located at the centre of the module, an example 
of a cryomodule is shown in Fig. 1 (below). The 
cryomodule consists of cavity packages, input 
couplers, the gas return pipe (GRP), magnetic 
shields, two sets of thermal shields, cooling 
pipes and the vacuum vessel. The cooling pipes 
includes the 2 K two-phase superfluid helium 
pipeline, 2 K gas helium return line (Φ 300 
mm), 5 K shield line and 80 K or 40 K shield 
line. The cold mass at 2 K is enclosed with two 
thermal shields at 5 K and 40 K which are 
cooled with LHe (liquid helium) [2]. A cross-
sectional view of cryomodule is shown in Fig. 1a. 

2. Pressure Vessel Compliance for 
Cryomodules 

The cryomodule has components that can be 
considered as pressure vessels and needs to be 
cleared by high-pressure gas safety authorities 
for operation. Most of the components like the 2 
K GHe return line, 2 K two-phase line, 5 K 
thermal shield line and 80 K thermal shield line 
are stainless steel (SUS316L) pipes which 
doesn’t create any issues with clearing high 
pressure safety regulations. However, the SRF 
cavities are constructed of Niobium and encased 
in a Ti helium jacket, which is filled with 
superfluid helium (another phase of liquid 
helium) at 2.0 K for its operational conditions, 
hence the assembly is considered as a pressure 
vessel [3]. The materials such as Niobium, 
Titanium and NbTi alloys are not approved for 
pressure vessel design due to the lack of code 
data in high pressure codes, for room 
temperature and cryogenic temperatures (at 
4.21 K or below). Hence, to operate the SRF 
cavity assembly it is necessary to show certain 

level of safety which is greater than or at least 
equal to acceptable standards to the high-
pressure gas safety authorities for the cavity 
operation. 

2.1.1. 1.3 GHz SRF Cavity Assembly 

There are currently two types of 1.3 GHz SRF 
cavity design in operation: Tesla and Tesla-like 
cavities. The difference between the shapes of 
the cavity is minuscule but the design of the 
Titanium Jacket, end group and Tuner varies in 
many facilities. The current Tuner and Ti 
Jacket design proposed for ILC’s SRF cavities is 
shown in the Fig. 2 (below) and its cut section 
view in Fig. 2 (top). 

 
The largest accelerator operating the Tesla 

cavities is the European Free Electron Laser 
(EU-XFEL). It is a 2.1 km superconducting 
Linac to accelerate electron to 17 GeV by using 

Fig. 2 Illustration of a 1.3 GHz Nb SRF cavity 
assembly (top) [3]; 1.3 GHz SRF cavity 
assembly for ILC (below) [2] 
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808 1.3 GHz 9-Cell SRF cavities [4]. Design of 
the Eu-XFEL’s 1.3 GHz Tesla cavity assembly is 
shown in the Fig. 3.  
 

 
Fig. 3 Tesla cavity assemble at Eu-XFEL DESY 
(top) and its cut view (below) [4] 

3. Structural Analysis 

3.1. Structural Analysis using FEA [5] 

The FEA is a powerful computational 
technique for approximate solutions to a variety 
of “real-world” problems. It relies on 
decomposition of domain (solid, liquid or gas) 
into a finite number of sub-domains for which 
systematic approximate solution is constructed 
by applying the variational or weighted residual 
methods. FEA reduces the problem into finite 
number of unknowns by dividing the domain 
into elements and by expressing the unknown 
field variable in terms of the assumed 
approximating functions within each element. 
These functions are also called interpolating 
functions are defined in terms of the values of 
the field variables at specific points, referred as 
nodes which are located along the element 
boundaries and connects the adjacent elements. 
The ability to discretize the irregular domains 
with finite elements makes the method a 

valuable and practical analysis tool for the 
solution of boundary, initial, and eigenvalue 
problems in various engineering disciplines [5]. 
The FEA method requires following steps. 

• Discretization of the domain into finite 
number of sub-domains. 

• Selection of interpolating functions. 
• Development of the elemental matrix of the 

sub-domain. 
• Assembly of the element matrices for each 

subdomain to obtain global matrix for the 
entire domain. 

• Imposition of boundary conditions. 
• Solution of equations. 
• Additional data-analysis if necessary. 
In matrix notation, the global system of 

equations can be cast into: 		
Ku = F, (3 − 1) 

Where K is the system stiffness matrix, u is the 
vector of unknowns, and F is the force vector. 
Depending on the nature of problem, K maybe 
be dependent on u and F maybe time dependent, 
i.e., F = F(t) [5]. 

3.1.1. Nodes 

A node specifies the coordinate location in 
space where degrees of freedom and actions of 
the physical problem exist. The nodal 
unknowns in the matrix system of equations 
represents on or more of the primary field 
variables. Nodal variables assigned to an 
element are called degrees of freedom (DOF) of 
the element. The common nodes provide the 
continuity for the nodal variables. DOF of a 
node is dictated by the physical nature of a 
problem and the element type [5]. 

3.1.2. Elements 

The geometry can be discretized considering 
the complexity of shape and the physical nature 
of the problem. There are various methods of 
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discretization methodologies like line element 
for 1D problems, area elements like triangular, 
rectangular and quadrilaterals for 2D problems 
and tetrahedrals, prisms and hexahedrals for 
volume elements. The elements are identified 
by element numbers and is defined by a specific 
sequence of global node numbers, as shown in 
Fig. 4 [5]. 

 

3.2. Direct Approach for FEA 

3.2.1. Linear Spring System 

It is suitable for simpler problems but is 
fundamental step of a typical finite element 
analysis. In this approach a linear spring 
system is considered in 1-D domain [5]. As 
shown in Fig. 5, a linear spring with stiffness 𝑘𝑘 
has two nodes and each nodes is subjected to 
axial loads of 𝑓𝑓!  and 𝑓𝑓"  resulting in 
displacement of 𝑢𝑢!  and 𝑢𝑢"  in their defined 
positive direction. 

Due to the defined nodal forces the resulting 
displacement is, 

		
u = 𝑢𝑢! − 𝑢𝑢", (3 − 2) 

 

This is related to force acting on the spring 
		

𝑓𝑓! = ku = k(𝑢𝑢! − 𝑢𝑢"), (3 − 3) 

The equilibrium of forces requires that 
		

𝑓𝑓" = −𝑓𝑓!, (3 − 4) 

Which yields 
		

𝑓𝑓" = k(𝑢𝑢" − 𝑢𝑢!), (3 − 5) 

Combining equation 3-3 and 3-5 and rewriting 
the equations in matrix form, we get 

		

3 𝑘𝑘 −𝑘𝑘
−𝑘𝑘 𝑘𝑘 4 5

𝑢𝑢!
𝑢𝑢"6 = 7𝑓𝑓!𝑓𝑓"

8 	𝑜𝑜𝑜𝑜	𝑘𝑘($)𝑢𝑢($) = 𝑓𝑓($). (3 − 6) 

Here, 𝑢𝑢($)  is the vector of nodal unknowns 
representing displacement, 𝑘𝑘($) is the element 
(stiffness) matrix and 𝑓𝑓($)  is the element 
(force) vector. The stiffness matrix can be 
represented in its indicial form as 𝑘𝑘&'

($), 
		

𝑘𝑘($)~	𝑘𝑘&'
($). (3 − 7) 

where i and j are the row and the column 
numbers. The coefficients, 𝑘𝑘&'

($) , may be 
interpreted as the force required at node 𝑖𝑖 to 
produce unit displacement in node 𝑗𝑗 while all 
the other nodes are fixed [5].  

Fig. 4 line, area and volume elements with node 
numbers at element level [5] 

Fig. 5 Discretization of a domain: element and 
node (Top); free-body diagram of a linear 
spring element (bottom) [5] 
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3.2.2. Assembly of the Global System of 
Equations 

To model an engineering problem with finite 
elements requires the assembly of element 
characteristic (stiffness) matrices and element 
right-hand-side vectors, leading the global 
system of equations, as equation 3-1 [5]. 

		
Ku = F, (3 − 8) 

The global system matrix, K, can be obtained 
from the “expanded” element coefficient 
matrices,	𝑘𝑘($), by summation in the form 

		

K = B𝑘𝑘($)
(

$)!

, (3 − 9) 

 

The parameter 𝐸𝐸  denotes the number of 
elements and the expanded element 
characteristic matrices are the same size as the 
global system matrix but have the rows and 
columns of zeros corresponding to the nodes not 
associated with element (e). Similarly, the 
global right hand side vector, 𝐹𝐹, can be obtained 
from the expanded element coefficient vectors, 
f(e), by summation in the form given below, and 
the size of the global right-hand-side vector is 
also dictated by the highest number among the 
global node numbers [5]. 

		

F =B𝑓𝑓($)
(

$)!

, (3 − 10) 

The global system matrix and the global right-
hand-side vector are constructed by considering 
the systems of linear springs shown in Fig. 6. 
For an element equations for a spring is given 
by equation 3-6 and rewritten as [5] 

		

G
𝑘𝑘!!
($) 𝑘𝑘!"

($)

𝑘𝑘"!
($) 𝑘𝑘""

($)H I
𝑢𝑢!
($)

𝑢𝑢"
($)J = I

𝑓𝑓!
($)

𝑓𝑓"
($)J . (3 − 11) 

In which 𝑘𝑘!!
($) = 𝑘𝑘""

($) = 𝑘𝑘($)  and 𝑘𝑘"!
($) = 𝑘𝑘!"

($) =
−𝑘𝑘($). The subscripts corresponds to Node 1 and 
2. In accordance with equation 3-8 and 3-9 the 
global system matrix is (4 × 4) and is shown 
below [5] 

		

K =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑘𝑘!!

(!) 𝑘𝑘!$
(!) 0 0

𝑘𝑘$!
(%) )

𝑘𝑘$$
(!) + 𝑘𝑘!!

($)

+𝑘𝑘!!
(&) + ,𝑘𝑘!$

($) + 𝑘𝑘!$
(&)- 0

0 ,𝑘𝑘$!
($) + 𝑘𝑘$!

(&)- )
𝑘𝑘$$
($) + 𝑘𝑘$$

(&)

+𝑘𝑘!!
(') + 𝑘𝑘!$

(%)

0 0 𝑘𝑘$!
(%) 𝑘𝑘$$

(')⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (3 − 12) 

And the global right-hand-side vector is (4 × 1) 
and the contribution of each element is summed 
as 

		

K = 8

𝑓𝑓!
𝑓𝑓$
𝑓𝑓&
𝑓𝑓'

: =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑓𝑓!

(!)

𝑓𝑓$
(!) + 𝑓𝑓!

($) + 𝑓𝑓!
(&)

𝑓𝑓$
($) + 𝑓𝑓$

(&) + 𝑓𝑓!
(')

𝑓𝑓$
(') ⎦

⎥
⎥
⎥
⎥
⎤

. (3 − 13) 

And the vector of unknowns, u, becomes 
		

u = 8

𝑢𝑢!
𝑢𝑢$
𝑢𝑢&
𝑢𝑢'

: =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑢𝑢!

(!)

𝑢𝑢$
(!) = 𝑢𝑢!

($) = 𝑢𝑢!
(&)

𝑢𝑢$
($) = 𝑢𝑢$

(&) = 𝑢𝑢!
(')

𝑢𝑢$
(') ⎦

⎥
⎥
⎥
⎥
⎤

. (3 − 14) 

Fig. 6 System of linear springs (top) and 
corresponding FEA (below) [5] 
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For the specific values 𝑘𝑘!!
($) = 𝑘𝑘""

($) = 𝑘𝑘($) 
and 	𝑘𝑘"!

($) = 𝑘𝑘!"
($) = −𝑘𝑘($) , the global system 

matrix becomes 
		

K = 𝑘𝑘(𝑒𝑒) 8
1 −1 0 0
−1 3 −2 0
0 −2 3 −1
0 0 −1 1

: . (3 − 15) 

The eigenvalues are 𝜆𝜆! = 0, 𝜆𝜆$ = 2, 𝜆𝜆& = 3 −
√5, and	𝜆𝜆& = 3 − √5 . The corresponding 
eigenvectors are 

		

u(!) = 8

1
1
1
1

: , u($) = 8

1
−1
−1
1

: ,

u(&) = 8

1
2 − √5
−2 + √5

1

: , u(') = 8

1
2 + √5
−2 − √5

1

: . (3 − 16)

 

Each of the eigenvectors represents a possible 
solution mode and their contribution is illustrated 
in Fig. 7. 

 

In order to have unique solution, the global 
system matrix is rendered non-singular by 
eliminating the zero eigenvalue. This is 
achieved by introducing boundary condition to 
suppress the translational mode of the solution 
corresponding to the zero eigenvalue [5]. 

If a boundary condition is imposed like 𝑢𝑢! =
0, the nodal force 𝑓𝑓! still remains an unknown 
and other nodal displacements are unknowns, 
and the corresponding nodal forces have values 
of 𝑓𝑓! = 0, 𝑓𝑓" = 𝑓𝑓+ = 0,  and 𝑓𝑓, = 𝐹𝐹 . Then the 
global system of equations are written as 

		

𝑘𝑘(𝑒𝑒) 8
1 −1 0 0
−1 3 −2 0
0 −2 3 −1
0 0 −1 1

: 8

0
𝑢𝑢$
𝑢𝑢&
𝑢𝑢'

: = 8

𝑓𝑓!
0
0
𝐹𝐹

: , (3 − 17) 

Leading to following solutions 
		

−𝑘𝑘($)𝑢𝑢" = 𝑓𝑓1, (3 − 18) 

And 
		

𝑢𝑢" =
𝐹𝐹

𝑘𝑘(𝑒𝑒)
,𝑢𝑢+ =

3
2

𝐹𝐹

𝑘𝑘(𝑒𝑒)
,𝑢𝑢, =

5
2

𝐹𝐹

𝑘𝑘(𝑒𝑒)
. (3 − 19) 

And the unknown nodal force 𝑓𝑓! is determined 
as 𝑓𝑓! = −𝐹𝐹. The physically acceptable solution 
mode is shown in Fig. 8 below. 

 

3.3. FEA with ANSYS® Simulation Software 

In this section, we will investigate the theory 
behind the structure analysis conducted using 
ANSYS® Mechanical APDL. This section is 
basically an outline of the theory behind 
structural analysis without material and 
geometric nonlinearities. It was referenced from 
ANSYS® Mechanical APDL theory reference 
[6].  

In this analysis, the applied load and the 
boundary conditions doesn’t change with time. 
However, material and geometrical non-

Fig. 7 possible solution modes for the system of 
linear springs [5] 

Fig. 8 Physically acceptable solution mode for 
the system of linear springs [5] 
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linearities can be modeled, such as material 
plasticity, creeping phenomenon etc. In terms of 
SRF cavity, we would like to know the stress at 
which the cavity structure will permanently 
change (stress intensity > 0.2% yield strength), 
rendering its structure permanently deformed. 

3.3.1. Stress-strain Relationship in ANSYS® 

The stress and strain for linear materials are 
related through the following equation and the 
stress vectors are shown in Fig. 9 [6]: 

 

 
		

{σ} = 𝐷𝐷{𝜀𝜀$-}, (3 − 20)  

where: 

{σ} = Stress vector = [𝜎𝜎.	𝜎𝜎/	𝜎𝜎0	𝜎𝜎./	𝜎𝜎/0	𝜎𝜎.0]1 

[D] = Elasticity or elastic stiffness matrix or 
stress-strain matrix. 

{𝜀𝜀$-} = {𝜀𝜀} − {𝜀𝜀23} = elastic strain vector 

{𝜀𝜀} = total strain vector = [𝜀𝜀.	𝜀𝜀/	𝜀𝜀0	𝜀𝜀./	𝜀𝜀/0	𝜀𝜀.0]1 

{𝜀𝜀23} = thermal strain vector 

The equation 3-20 can be inverted to: 
		

{ε} = {𝜀𝜀23} + [𝐷𝐷]4!{𝜎𝜎}, (3 − 21) 

For the 3-D case, the thermal strain vector is: 
		

{𝜀𝜀23} = ∆𝑇𝑇[𝛼𝛼.5$ 	𝛼𝛼/5$ 	𝛼𝛼05$ 	0	0	0]1 , (3 − 22) 

where: 

𝛼𝛼.5$ = Secant coefficient of thermal expansion in 
the 𝑥𝑥 direction 

∆𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇6$7  

𝑇𝑇  = current temperature at the point in 
question 

𝑇𝑇6$7 = reference strain free temperature 

The flexibility or compliance matrix is: 
		

[D]!" =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝐸𝐸#

−𝜈𝜈#$
𝐸𝐸#

−𝜈𝜈#%
𝐸𝐸#

0 0 0

−𝜈𝜈$#
𝐸𝐸$

1
𝐸𝐸$

−𝜈𝜈$%
𝐸𝐸$

0 0 0

−𝜈𝜈%#
𝐸𝐸%

−𝜈𝜈%$
𝐸𝐸%

1
𝐸𝐸%

0 0 0

0 0 0
1
𝐺𝐺#$

0 0

0 0 0 0
1
𝐺𝐺$%

0

0 0 0 0 0
1
𝐺𝐺#%⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3 − 23) 

Where the typical terms are: 

𝐸𝐸. = Young’s modulus in the x direction 

𝜈𝜈./ = major Poisson’s ratio 

𝜈𝜈/. = minor Poisson’s ratio 

𝐺𝐺./ = Shear modulus in the xy plane 

The [D]4!  matrix is considered to be 
symmetric, so that: 

		
𝜈𝜈/.
𝐸𝐸/

=
𝜈𝜈./
𝐸𝐸.

. (3 − 24) 
		

𝜈𝜈0.
𝐸𝐸0

=
𝜈𝜈.0
𝐸𝐸.

. (3 − 25) 
		

𝜈𝜈0/
𝐸𝐸0

=
𝜈𝜈/0
𝐸𝐸/

. (3 − 26) 

The 𝜈𝜈./ , 𝜈𝜈/0, 𝜈𝜈.0, 𝜈𝜈/. , 𝜈𝜈0/	𝑎𝑎𝑎𝑎𝑎𝑎	𝜈𝜈0.  are not 
independent quantities because of above three 
relations and therefore at least one quantity is 
required from either side of the equation for 
orthotropic materials. In ANSYS®, it is 
assumed that 𝐸𝐸.  is larger than 𝐸𝐸/ , 𝜈𝜈./  is 
larger than 	𝜈𝜈/. . Hence, 𝜈𝜈./  is referred as 

Fig. 9 Stress vector definition [6] 
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“major’ Poisson’s ratio and 𝜈𝜈/.  as “minor” 
Poisson’s ratio. For isotropic materials 	(𝐸𝐸. =
𝐸𝐸/ = 𝐸𝐸0	𝑎𝑎𝑎𝑎𝑎𝑎	𝜈𝜈./ = 𝜈𝜈/0 = 𝜈𝜈.0), so it doesn’t make 
any difference with the provided data [6]. 

3.4. Eigenvalue Buckling 

3.4.1. Euler’s Buckling Load 

The criteria for failure for a structure until 
now has been considered as the stress generated 
in a body due to its own weight or the external 
load should not exceed the yield stress of its 
construction material. However, when a 
structure has a dimension disproportionally 
larger than the others like a long slender beam, 
it is susceptible to failure under compressive 
force. The compressive force can be the 
structure’s own weight or some kind of external 
force. The sheer size difference will cause the 
lateral deflection to be larger than the axial 
displacement called as buckling failure. This 
kind of failure is quite sudden and should be 
avoided for structure’s integrity [7]. 

3.4.2. Euler Buckling Load for a pinned-
pinned column 

An example of buckling load for a pinned-
pinned slender column subjected to axial forces 
at the ends is shown in this section. To 
determine the expression for buckling load, it is 
assumed that the column has already buckled 
and seek to determine the value of compressive 
force ‘F’ necessary to hold it in equilibrium. It is 
accomplished by proceeding to determine the 
distribution of the column’s deflection in terms 
of	𝐹𝐹. In Fig. 10, a free-body diagram by passing 
a plane through the column at an arbitrary 
position	𝑥𝑥 [7].  

 

The bending moment for the column is 	𝑀𝑀 =
−𝐹𝐹𝜈𝜈 , where 𝜈𝜈  the column’s deflection at is	𝑥𝑥 . 
Substituting this expression in a relationship 
between the beam’s deflection and the bending 
moment 𝜈𝜈" = 𝑀𝑀/𝐸𝐸𝐸𝐸 we get  

		
𝜈𝜈" + 𝜆𝜆"𝜈𝜈 = 0, (3 − 27) 

Where 
		

𝜆𝜆" =
𝐹𝐹
𝐸𝐸𝐸𝐸 ,

(3 − 28) 

Where EI is the flexural rigidity, E is the 
Young’s modulus and I is the moment of inertia. 
The general solution of second order differential 
equation 3-27 is 

		
𝜈𝜈 = 𝐵𝐵 sin 𝜆𝜆𝑥𝑥 + 𝐶𝐶 cos 𝑥𝑥 . (3 − 29) 

Where B and C are constants. From the 
boundary condition that deflection is 0 at 𝑥𝑥 =
0, 𝜈𝜈|.)8	𝑖𝑖𝑖𝑖	0, we get C = 0. The deflection is also 
0 at 𝑥𝑥 = 𝐿𝐿. 

		
𝜈𝜈|.)9 = 0, (3 − 30) 

		
Bsin 𝜆𝜆𝐿𝐿 = 0. (3 − 31) 

If B = 0, then 𝜈𝜈 = 0 which does satisfy equation 
3-27 but we are seeking a buckled solution, 
hence if 𝐵𝐵 ≠ 0 then 

Fig. 10 Buckled column in equilibrium (a); 
determining bending moment as a function of x 
(b) [7] 
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sin 𝜆𝜆𝜆𝜆 = 0. (3 − 32) 

The parameter 𝜆𝜆 depends on the compressive 
force F and equation 3-32 has infinite number 
of roots for	𝜆𝜆. It is satisfied when  

		
𝜆𝜆 =

𝑛𝑛𝑛𝑛
𝜆𝜆 . (3 − 33) 

Where n is any integer. 

Substituting equation 3-33 into 3-28 and 3-
29, we obtain axial load as in equation 3-34 and 
deflection as in equation 3-35, with various 
modes of deflections shown in Fig. 11 [7]: 

		

𝐹𝐹 =
𝑛𝑛"𝑛𝑛"𝐸𝐸𝐸𝐸

𝜆𝜆"
. (3 − 34) 

		
𝜈𝜈 = Bsin

𝑛𝑛𝑛𝑛𝑛𝑛
𝜆𝜆 . (3 − 35) 

 

3.4.3. Euler’s Buckling Load for other 
boundary conditions 

Some of the other end conditions that can be 
applied to a slender column is shown in Fig. 12 
and their Euler’s buckling load is given by 

		

𝐹𝐹 =
𝑛𝑛"𝑛𝑛"𝐸𝐸𝐸𝐸
𝐾𝐾𝜆𝜆"

. (3 − 36) 

Where K is the column effective length factor 
and its values are given in Fig. 12. 

 

3.4.4. Eigenvalue Buckling with ANSYS® 

The search for the load that can cause 
structural instability and bifurcation is known 
as buckling load. The finite element equilibrium 
equations for this type of analysis involve the 
solution of homogeneous algebraic equations 
whose lowest eigenvalue corresponds to the 
buckling load, and the eigenvector represents 
the primary buckling mode. Eigen value 
buckling is used to calculate the theoretical 
buckling load of a linear elastic structure. Since, 
it assumes the structure exhibits linearly 
elastic behavior, the predicted buckling loads 
are overestimated (unconservative). This is 
available for valid structural degrees of freedom 
only and the structure fails suddenly with a 
horizontal force deflection curve. The structure 
is considered to have constant stiffness effects 
[6]. 

Fig. 11 Deflection distributions for increasing 
values of n [7] 

Fig. 12 Mode of failure of a slender column with 
different boundary conditions 
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A static solution is needed to establish the 
stiffening of the structure under the applied 
load (stress stiffening). There are several 
buckling modes (theoretically, infinitely many!) 
in a structure. The first buckling mode is the 
one requiring the smallest load. A linear 
structure with a force buckling curve like Fig 
13a is well modelled by a linear buckling 
analysis, whereas for curve like Fig 13b, a large 
deflection analysis is appropriate (with large 
deflection ON). The buckling problem is 
formulated as eigenvalue problem [6]: 

		
([𝐾𝐾] + 𝜆𝜆&[𝑆𝑆]){𝜓𝜓&} = 0, (3 − 37) 

where: 

[𝐾𝐾] = Stiffness matrix 

[𝑆𝑆] = Stress matrix 

𝜆𝜆&  = ith eigenvalue (used to multiply loads 
generated in [𝑆𝑆] 

𝜓𝜓& = ith eigenvector of displacements 

The eigenvectors are normalized so that the 
largest component is 1.0. Thus, the stresses 
(when output) may only be interpreted as a 
relative distribution of stresses. By default, the 
Block Lanczos and Subspace Iteration methods 
find buckling modes in the range of negative 
infinity to positive infinity [6]. 

3.5. Non-linear Structural Analysis 

This is a good tool to confirm the buckling load 
of a structure, when there is a small 
deformation in the structure due to some 
unknown external factors or when the structure 
is already deformed due to known or unknown 
factors. In this case, large deflection 
methodology or arclength method can be 
applied to model the sudden large displacement 
in a structure due to buckling. 

4. 1.3 GHz SRF Cavity Assembly FEA 

The stress and buckling analysis is performed 
on a 3-cell 1.3-GHz Niobium SRF cavity with its 
Titanium jacket, its structure is as shown in 
Fig. 14. The cavity shape and Titanium jacket is 
similar to Tesla-like that was designed at KEK. 
This simulation is just an example and should 
not be considered as the finalized results for the 
stress and buckling analysis for Tesla-like 
cavity. 

4.1. Static Structure Analysis 

For the high-pressure gas safety authority 
the SRF cavity with its Titanium vessel should 
be able to withstand maximum allowable 
working pressure (MAWP) of 0.2 MPa or 2 bar 
absolute pressure. The cavity normal operating 
pressure is 0.003 MPa or 0.03 bar absolute, 
which is roughly the saturated vapor pressure 
of 2.0 K superfluid helium. Moreover, since this 
design and the materials used for this assembly 
are not standardized the design must be proven 
robust. For this design, the simulation is 
divided in three case studies: 

• Case A: In this case the assembly is in room 
temperature condition (40 °C) with helium gas 
between the SRF cavity and Ti jacket. The 
MAWP between the SRF cavity and Titanium 
Jacket is 0.2 MPa and the tuner displacement is 
0.65 mm. The location of tuner displacement 

Fig. 13 Types of buckling problems [6] 
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can be seen in Fig. 14. The displacement is 
considered equally on either jackets, hence, 
0.325 mm on one jacket and -0.325 mm on the 
other tank. There is vacuum outside Ti jacket 
and inside SRF cavity. 

• Case B: In this case, the assembly is cooled 
down to operational conditions by filling 
superfluid helium between the SRF cavity and 
its Ti helium jacket, i.e, it is cooled down from 
40 °C to -271.4 °C (1.8 K). The MAWP between 
the SRF cavity and Ti Jacket is 0.2 MPa and the 
tuner displacement is 0.65 mm. There is 
vacuum outside Ti jacket and inside of the SRF 
cavity. 

• Case C: In this case, the assembly is cooled 
down to operational conditions by filling 
superfluid helium between the SRF cavity and 
its Ti helium jacket, i.e, it is cooled down from 
40 °C to -271.4 °C (1.8 K). The MAWP between 
the SRF cavity and Titanium helium Jacket is 
0.2 MPa and the tuner displacement is 
maximized to 3 mm. There is vacuum outside Ti 
jacket and inside the SRF cavity. 

The layout of the cases in ANSYS® 
Workbench is shown in Fig. 15 and each 

component is described in detail in next 
sections. 

 

4.1.1. Engineering Data 

In this section, the necessary material 
properties are inserted to provide necessary 
information regarding the elastic and plastic 
behavior of the materials. Examples of some of 
the included properties are Young’s modulus, 
Poisson’s ratio, Shear modulus, Coefficient of 
thermal expansion etc. It is possible to vary 
properties with respect to temperatures too 
either in tabular or in equation form. 

For this simulation, we will only consider the 
elastic properties of Nb and Ti. The properties 
that were entered in the engineering data are 
shown in Fig. 16 and the properties are also 
listed in table 1: 

Fig. 15 3-cell 1.3 GHz Tesla-like cavity with its 
Titanium jacket 

Fig. 14 3-cell 1.3 GHz Tesla-like cavity with its Titanium jacket 
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subsequent simulations in the quantities such 
as stress, strain, deformation etc.  

• Geometry: All the solids or surface geometries 
are listed here. The materials are assigned to 
individual solids, as shown in Fig. 18. The 
cavities are assigned Niobium and the jackets 
are assigned Titanium. 
 

 
• Symmetry: This is an optional setting. As the 
cavity and tank structure can be considered axi-
symmetrical, only a half 3D model of the 
structure was modeled, and the other half was 
considered as a symmetry. In this case, the 
model is symmetrical in z-axis and the faces in 
red are with which the cavity model is 
symmetrical to, as seen in Fig. 19. 
 

 
• Meshing: In this section, the uploaded CAD 
geometry is discretized using hexahedral 
meshes. Mesh dependency studies have to be 
carried out and the maximum possible size of 
the meshes were determined. In this case the 
maximum mesh size was selected to be 3 mm. 
The geometry was discretized in to 87,440 
number of elements and 470,000 nodes, as 
shown in Fig. 20. 

 

 

4.1.4. Setup 

In this section, the external factors and 
boundary conditions are provided to the model. 
The analysis settings and boundary conditions 
are shown in Fig. 21: 
 

 
• Analysis settings: In this section, we can 
basically set the number of steps, switching 
large deflection ON or OFF for non-linear 
structural analysis and other controls, as shown 
in Fig. 22. 
  

 
• Pressure: The inner faces of the Ti jacket and 
the outer faces of the SRF cavities are selected 
to provide pressure condition normal to them. 

Fig. 18 Material assignment in ANSYS® Model 

Fig. 19 Symmetry region for the half 3D model 
(in red) 

Fig. 20 Discretization of the geometry by 
meshing 

Fig. 21 Boundary conditions and analysis 
settings 

Fig. 22 Analysis settings for the simulation 
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For all cases, pressure was set to 0.2 MPa, as 
seen in Fig. 23. 
 

 
• Displacement: This is provided to the cross-
sectional inner surface of the Tank 1 and Tank 
2, respectively, as seen in Fig 24, to simulate the 
tuner movement, which stretches the cavity 
structure. There is a virtual spring with a 
stiffness coefficient of 206 N/mm connecting 
these surfaces, which replaces the Ti bellow 
(added in connection setting). Displacement 
condition can used to fix or provide movement 
to a line or surface in any direction. In this case, 
the cavity was stretched in ±x-axis and the 
cavity movement in other directions were kept 
free to deform or move. 
 

 
• Remote Displacement: This was not used to 
provide any displacement but to fix the end 
flanges in Y-direction. As the cavity structure is 
in a string in a cryomodule and is connected to 
another cavity structure with a bellow 
assembly, as seen in Fig. 1, it cannot be fixed in 
all three directions of the space. Hence, only a 
line contact is fixed in Y-direction and no 

rotation is allowed along any direction, as 
shown in Fig. 25. 

 

4.1.5. Solution and Results 

In this section, the results of the converged 
solution are shown. It is possible to view and 
plot many of the quantities such as Von-misses 
stress, Von-misses strain, Stress intensity, 
Deformation (total or directional), strain energy, 
linear stress etc. Moreover, with a probing tool 
it is possible to determine all of the above listed 
quantities at a node, element, line or a plane. 
Usually, the results are visually represented in 
a gradient color format but that can be modified 
according to designers’ preference. It is possible 
to form charts, graphs and many other 
graphical and visual form of the simulation 
results. 

The stress intensity on the cavity assembly 
for Cases A, B and C are shown in Fig. 26 and 
summarized in Table 2 and 3. The maximum 
stress intensity in all cases occurred at the 
stiffener ring weld section. It is mainly due to 
the stretching effect on the cavity from tuner 
displacement. For the high-pressure gas safety 
regulations, the mechanical properties of the 
materials used to manufacture the pressure 
vessel should satisfy the following conditions: > 
1.5 times the maximum stress intensity for 
0.2% Y.S and > 4 times the maximum stress 
intensity for T.S, on individual components. 

Fig. 23 Pressure boundary condition (in red) 

Fig. 24 Displacement boundary condition 

Fig. 25 Remote displacement boundary 
condition 
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Table 2 Maximum stress intensity on 
various components of cavity assembly 

Case Nb Half 
Cells [MPa] 

Ti Tank 
[MPa] 

Nb-Ti weld 
[MPa] 

A 70 5 12 
B 76 5 23 
C 300 18 65 

 

Table 3 Maximum stress intensity on 
various sections of SRF cavity 

Case Stiffener 
Ring Weld 

[MPa] 

Iris 
Weld 
[MPa] 

Equator 
Region weld 

[MPa] 
A 147 22 12 
B 161 24 14 
C 668 111 67 

Fig. 26 Stress intensity on the cavity assembly for various cases 

Case A 

Case B 

Case C 
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4.2. ANSYS® Eigenvalue Buckling 

In this FEA, we would determine the pressure 
at which the cavity structure will buckle. As 
theorized before this analysis only takes the 
elastic region of the materials in consideration. 
For this analysis, Case B is taken into 
consideration, as the tuner movement is the 
least out of all cases and the cavity structure 
would be easier to buckle in Case B rather than 
Case C, as larger tuner movement makes the 
cavity structure more difficult to buckle. The 
case structure of Eigenvalue buckling in 
ANSYS® is shown in Fig. 27. 

 

 

4.2.1. Engineering Data 

In this case, the engineering data is the same 
as in static structure analysis, as the 
engineering data is linked, the elastic 
mechanical properties are transferred to the 
geometry for Eigenvalue buckling system. 

4.2.2. Geometry 

The geometry remains the same as the 
geometry considered for the static structure 
analysis. Hence, the same geometry is 
forwarded to this system by linking them. 

4.2.3. Model 

As the same geometry is transferred from the 
static structure analysis system, the model with 

its meshing and connections are also 
transferred to eigenvalue buckling system. 

4.2.4. Setup 

In this case, the same boundary conditions 
were transferred to the eigenvalue buckling 
system. However, the pressure boundary 
condition is suppressed as it would be 
considered as a variable on each nodes of outer 
surface of SRF cavity and inner surface of Ti 
helium jacket, to determine the buckling 
pressure of the SRF cavity structure. The 
various boundary conditions are shown in Fig 
28. 

 

4.2.5. Analysis Settings for the Solver 

Mechanical APDL solves the governing 
equations for Eigenvalue buckling analysis. The 
pre-stress load pattern is set to No, since we 
would like to provide pressure as the variable to 
determine the load multiplier to the initial 
pressure condition of 0.2 MPa. In this case, we 
would like to determine 2 modes of failure, 

Fig. 27 Case structure of Eigenvalue buckling 
simulation 

Fig. 28 Boundary condition for structure 
analysis for buckling simulation 
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hence maximum number of modes to find are 
set to 2, as seen in Fig. 29. 
  

 

4.2.6. Results and discussions 

The buckling load multiplier for the cavity 
structure was determined to be 385.2 for the 1st 
Eigen mode and 386.6 for the 2nd Eigen mode, 
as seen in Fig. 30. This provides the buckling 
pressure of 77.1 MPa (385.2 × 0.2	MPa) for both 
Eigen modes. As the mode of failure were at the 
sections of similar thickness and similar in 
nature, the load multipliers were equal to each 
other. The buckled behavior of the structures 
can be seen in Fig. 31. 

For a 9-cell cavity, the 1st mode of Eigenvalue 
buckling occurs at 48 MPa with similar 
boundary conditions. The mode of failure for a 
9-cell cavity structure is similar to the one 
shown for 3-cell cavity structure. 

 

Fig. 29 Analysis setting (top) and nodal 
pressure boundary condition (below) Fig. 30 Load multiplier for the buckling modes 

1st Eigen mode 

2nd Eigen mode 

Fig. 31 Load multiplier for the buckling modes 
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4.3. Non-linear Structural Analysis 

This analysis is conducted to verify the 
results obtained from the Eigen value buckling 
analysis, and to study the effect of deformations 
in the cavity structure on its buckling pressure. 
In this study, the buckled structure from Case B 
was considered for a non-linear structural 
analysis with large deflection set to ON to 
determine the buckling pressure. 

4.3.1. Case structure 

The case structure for this simulation is a 
continuation of the Eigen value buckling 
analysis, where any of the determined buckling 
mode can be transferred to a static structure 
analysis. Moreover, it is possible to control the 
level of buckling in the structure that would be 
transferred with scale factor, which can be 
varied from 0 to > 1, where 0 being the original 
structure and 1 being the buckled structure that 
would be transferred to the static structure 
analysis. Here, the 1st Eigen mode was 
transferred to four static structure analysis 
studies with the scale factors being varied from 
0.005, 0.01, 0.1 and 1, as shown in Fig. 32. 
 

 

4.3.2. Boundary Conditions 

 The boundary conditions remained the same 
as the ones previously used for structure 
analysis of Case B, except the pressure 
boundary condition, which was incrementally 
increased from 0 – 80 MPa in 8 steps to 
determine the buckling pressure, as shown in 
Fig. 33. At the buckling pressure, the solution 
will not converge due to large deformation of the 
structure, as seen on Fig. 34. 

 
 

 

4.3.3. Results and Discussions 

The buckling pressure was determined by 
placing a total deformation probe on a point on 
the cavity structure where the maximum 
buckling occurs. The location of the deformation 
probe is shown in Fig. 35. The total deformation 
obtained from the deformation probe was 
plotted against the pressure condition for Fig. 32 Case structure for non-linear structural 

analysis 

Fig. 33 Incremental pressure boundary 
condition 

Fig. 34 Buckled cavity structure 



９-２－ 19

various scaling factors and is shown in Fig. 36. 
The buckling pressure was 74 MPa for a 
structure with scale factor of 0.005 and 
approximately 54 MPa for the scale factor of 1. 
From the plot it can theorized, that for elastic 
material properties, the cavity will not buckle 
upto 54 MPa pressure. The buckling pressure 
usually should be > 4 times the MAWP, and in 
this case the cavity structure has sufficient 
strength to qualify for that criterion.  
 

 
 

 

5. Summary 

In this lecture, the basics of finite element 
analysis for static structure and buckling 
failure was detailed. An example of 3-cell 1.3 
GHz Tesla-like cavity was considered to 
determine the stress generated on the cavity for 
the high-pressure gas safety conditions (the 

results are different for 9-cell cavity). Moreover, 
the buckling pressure and its Eigen modes were 
determined. 
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Fig. 35 Deformation probe location on the 
structure after buckling for scale factor of 
0.005 at 73.5 MPa pressure 

Fig. 36 Pressure v/s total displacement for the 
deformation probe on the Nb SRF cavity 




