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Introduction to LLRF 

1. Abstract 

In this lecture an introduction to Low Level 
Radio Frequency (LLRF) is given. The lecture is 
divided into two parts. First, after explaining 
the purpose of LLRF, an introduction to the 
theoretical background is given. This covers the 
modeling of accelerating RF cavities, the 
deduction of fundamental equations, and short 
peaks into signal processing and controller 
theory. This part also includes a demo with a 
cavity simulator, to give the listener a better 
feeling, on how a basic system behaves. The 
second part of the lecture focuses on the 
architecture of LLRF systems, actual 
applications, and real-world examples. At the 
end of the lecture, the listener should have a 
good idea what LLRF is about and what path to 
follow, if he or she wants to get involved with 
this topic. 

2. Introduction 

LLRF stands for Low Level Radio Frequency. 
The goal is to control RF fields withing cavities. 
Depending on the application, the requirements 
on the LLRF system vary drastically. E.g., in a 
single cavity vertical test stand, it is important 
to control the amplitude, but the phase basically 
does not matter. On the other hand, in a particle 
accelerator both, amplitude and phase have to 
be controlled precisely. Furthermore, there are 
different types of cavities, such as normal 
conducting (NC) cavities and superconducting 
radio frequencies (SRF) cavities. Depending on 
the application, the frequencies are different, 
ranging typically from several MHz to tens of 
GHz. 
Especially in SRF cavities, voltages of several 
tenths of MV are common. Such high fields are 

impossible to detect directly. Thus, only a very 
small fraction of the field is coupled out via a 
pickup antenna. Its signal is then sent to the 
LLRF system for detection. Typically, the input 
power to the LLRF system is less than 1 W, 
hence Low Level RF. 
Depending on the purpose of the facility, 
cavities are operated in a specific mode. There 
are continuous wave (CW) machines, in which a 
continuous RF field is maintained within the 
cavities. Its duty factor is 100% and, if the 
facility is a particle accelerator, beam can be 
accelerated all the time. On the other hand, 
cavities can be operated in pulsed mode. This 
can be distinguished into short pulse mode (SP) 
and long pulse mode (LP). In SP mode the duty 
factor is typically about 1%, meaning only 
during 1% of the time RF is fed into the cavity. 
Beam acceleration is possible only during a 
portion of this time. In LP mode the duty factor 
is typically 10% to 50%. 
 
The most basic setup including an LLRF system 
is shown Figure 1. It comprises the LLRF 
system, which generates corresponding to a set 
setpoint a drive signal. This is fed into an 
amplifier, which amplifies it. It is then fed into 
a cavity. A small fraction of the RF is coupled 
out and sent back to the LLRF system, where it 
is detected. This is called an open-loop 
operation. By implementing a feedback 
controller, it is possible to perform closed loop 
operation. In this case the detected pickup 
signal is compared against the given setpoint. 
Based on its difference the drive signal is 
computed and generated.  
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Figure 1: Most basic setup including an LLRF 
system. 

 

3. LLRF System Overview 

In order to be able to decide how to design and 
build an LLRF system, one has to understand 
first the nature of the object, which shall be 
controlled – in this case a SRF cavity. A cavity 
is a resonator, which can be modeled in a first 
approximation with an RCL electric circuit. It is 
shown in Figure 2. 

 
Figure 2: RCL circuit. 

Before we explore the RCL model, let us define 
an important property of the cavity: the quality 
factor. In general, it is defined as the ratio 
between the energy stored in the cavity and the 
power dissipated from the cavity per RF cycle. 

 
𝑄𝑄 = 2𝜋𝜋𝑓𝑓0𝑊𝑊

𝑃𝑃𝑑𝑑
 

 
There are different ways power can dissipate 
from a cavity, e.g. via losses due to the surface 
resistance. In this case the quality factor is 
called unloaded quality factor and is defined as 
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where 𝑇𝑇 is the time period of an RF cycle, 𝐶𝐶 
the capacitance, 𝑉𝑉0  the amplitude of the 
oscillating voltage, and 𝑅𝑅 the resistance. With 
𝑊𝑊 = 1

2 𝐶𝐶𝑉𝑉0
2 , 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑉𝑉0
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2𝑅𝑅, 𝜔𝜔0 = 1
√𝐿𝐿𝐿𝐿, and 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 

we can rewrite the equation to: 
 

𝑄𝑄0 = 𝜔𝜔0𝑅𝑅𝑅𝑅 = 𝑅𝑅
𝐿𝐿𝜔𝜔0

= 𝜔𝜔0𝑊𝑊
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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Beside the losses due to the surface resistance, 
there are external losses, e.g. via the power 
coupler. In this case the quality factor is called 
the external quality factor: 
 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜔𝜔0𝑊𝑊
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒

 

 
When combining all losses, the quality factor is 
called the loaded quality factor: 
 

𝑄𝑄𝐿𝐿 = 𝜔𝜔0𝑊𝑊
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡

 

 
In this case the total dissipated power is 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒. One can compute the loaded quality 
factor as follows: 
 
 

𝑄𝑄𝐿𝐿 = 1
𝑄𝑄0

+ 1
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒
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In the case of SRF cavities 𝑄𝑄0 is several orders 
of magnitude larger than 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Thus, 𝑄𝑄𝐿𝐿 is in 
the same order as 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. 
In order to reflect the real world better, we have 
to add a transition line to the RCL model, as 
shown in Figure 3.  

 
Figure 3: RCL circuit with transition line [1]. 

This models e.g. the cable connecting the power 
amplifier to the cavity. It is represented as the 
impedance 𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒 and is like a parallel resistor to 
𝑅𝑅 . The characteristic impedance of a coaxial 
cable is 50 Ω. Both can be replaced by the shunt 
impedance: 
 

𝑅𝑅𝐿𝐿 =
1
𝑅𝑅 +

1
𝑍𝑍𝑒𝑒𝑥𝑥𝑥𝑥

 

 
We can rewrite 𝑄𝑄0 = 𝜔𝜔0𝑅𝑅𝑅𝑅 = 𝑅𝑅

𝐿𝐿𝜔𝜔0
= 𝜔𝜔0𝑊𝑊

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 to: 

 
𝑅𝑅
𝑄𝑄0

= 𝜔𝜔0 =
1

𝜔𝜔0𝐶𝐶
= √𝐿𝐿

𝐶𝐶 

 
Looking at this, we can see that 𝑅𝑅

𝑄𝑄0
 depends 

only on 𝜔𝜔0 , 𝐶𝐶 , and 𝐿𝐿 . This means that it 
depends only on the cavity geometry and not on 
the surface resistance. 
From 
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
2
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐2
𝑅𝑅 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐2

𝑅𝑅𝑠𝑠ℎ
 

 

we can see that the shunt impedance 𝑅𝑅𝑠𝑠ℎ 
depends on the dissipated power. Comparing it 
to the RCL resistance 𝑅𝑅𝑠𝑠ℎ, a factor of 12 of the 
time average has to be included: 
 

𝑅𝑅 = 1
2𝑅𝑅𝑠𝑠ℎ =

1
2
𝑟𝑟
𝑄𝑄𝑄𝑄0 

 
With this the normalized shunt impedance can 
be defined as: 
 

𝑟𝑟
𝑄𝑄 ≔ 𝑅𝑅𝑠𝑠ℎ

𝑄𝑄0
= 2𝑅𝑅
𝑄𝑄0

 

 
Furthermore, we can define the coupling 
between the cavity and the transmission line: 
 

𝛽𝛽 = 𝑅𝑅
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒

 

 
With 1

𝑅𝑅𝐿𝐿
= 1

𝑅𝑅 +
1

𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒
 we can rewrite this as: 

 
𝑅𝑅𝐿𝐿 =

𝑅𝑅
1 + 𝛽𝛽 

 
Using the definition of the shunt impedance we 
get the two following equations: 
 

𝑄𝑄𝐿𝐿 =
𝑄𝑄0

1 + 𝛽𝛽 

 
and 
 

𝜔𝜔1 2⁄ = 𝜔𝜔0
2𝑄𝑄𝐿𝐿

 

 
From this we can learn that the loaded quality 
factor of a cavity 𝑄𝑄𝐿𝐿  can be manipulated by 
changing the coupling 𝛽𝛽. Furthermore, at the 
same time the half-bandwidth 𝜔𝜔1 2⁄  is 
manipulated. This fact is exploited at facilities. 
Two possible ways are changing the insertion 
depth of the input coupler antenna or the angle 
of a reflector plate inside an RF waveguide. 
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For the following we will focus on the pulsed 
operation mode with beam loading. During 
every pulse RF is fed into the cavity in order to 
charge it up. This time period is called filling or 
fill time. It is followed by a time period, which is 
called flattop. During this time the amplitude 
and phase of the RF inside the cavity are kept 
constant. The flattop is the time period 
designated for beam acceleration. After the 
flattop, the RF drive of the cavity is shut off. The 
RF field inside the cavity decays, thus it is 
called decay. A schetch of such an RF pulse is 
shown in Figure 4. 
 

 
Figure 4: Cavity and drive amplitudes over time 
during an RF pulse [2]. 

Now let us assume that we would inject a beam 
(e.g. a train of electron bunches) into the cavity 
just at the beginning of the flattop. 
Furthermore, the beam would stop at the end of 
the flattop, just when the RF drive stops. The 
first electron bunch will draw energy from the 
RF field inside the cavity. This will lead to a 
drop of the cavity voltage. The second bunch will 
do the same, resulting in a further drop of the 
cavity voltage, and so on. One would see an 
effect, which looks similar like a decay after the 
flattop. This is called beam loading. In order to 

compensate for this, one can increase the RF 
drive power during the beam transient time, 
which is in our case the whole flattop. If the 
compensation is just right, a flat flattop can be 
restored. This is desirable, since only in this 
situation every electron bunch would receive 
the same energy gain. A plot of this is shown in 
Figure 5. 
 

 
Figure 5: Cavity gradient over time for an RF 
pulse with compensated beam loading during 
the flattop [1]. 

 
Let us find out the required filling and flattop 
powers for this case. 
In order to consider the beam-loading case, we 
have to extend the simple RCL circuit with an 
additional current source, (see Figure 6). 
 

 
Figure 6: RCL circuit in the case of the beam 
transient time [1]. 
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We can write the cavity current as the sum of 
currents of all three elements: 
 

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝑅𝑅 + 𝐼𝐼𝐿𝐿 
 
Simply deriving it for time yields: 
 

𝐼𝐼𝐶̇𝐶 + 𝐼𝐼𝑅̇𝑅 + 𝐼𝐼𝐿̇𝐿 = 𝐼𝐼𝑐̇𝑐𝑐𝑐𝑐𝑐 
 
 
With 𝐼𝐼𝑅̇𝑅 = 1

𝑅𝑅𝐿𝐿
𝑉̇𝑉𝑐𝑐𝑐𝑐𝑐𝑐 , 𝐼𝐼𝐶̇𝐶 = 𝐶𝐶𝑉̈𝑉𝑐𝑐𝑐𝑐𝑐𝑐 , and 𝐼𝐼𝐿̇𝐿 = 1

𝐿𝐿 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 
this yields: 
 

𝐶𝐶𝑉̈𝑉𝑐𝑐𝑐𝑐𝑐𝑐 + 1
𝑅𝑅𝐿𝐿

𝑉̇𝑉𝑐𝑐𝑐𝑐𝑐𝑐 + 1
𝐿𝐿 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑐̇𝑐𝑐𝑐𝑐𝑐 

 
With 1

𝑅𝑅𝐿𝐿𝐶𝐶 = 𝜔𝜔0
𝑄𝑄𝐿𝐿

 and 1
𝐿𝐿𝐿𝐿 = 𝜔𝜔0

2  this equation can 

be rewritten as: 
 

𝑉̈𝑉𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜔𝜔0
𝑄𝑄𝐿𝐿

𝑉̇𝑉𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜔𝜔0
2𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 1

𝐶𝐶 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 

 
This is a second order differential equation. In 
order to solve it, we need to find a homogeneous 
solution and a particular solution. The 
homogeneous solution reads: 
 

𝑉𝑉ℎ𝑜𝑜𝑜𝑜 = 𝑒𝑒−𝜔𝜔0𝑡𝑡
2𝑄𝑄𝐿𝐿 (𝐶𝐶1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶2𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖) 

 
with 𝛼𝛼 = 𝜔𝜔0√1 − 1

4𝑄𝑄𝐿𝐿
2. 

 
A particular solution is: 
 

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅𝐿𝐿𝐼𝐼𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔+𝛷𝛷)

√1 + tan2(𝛷𝛷)
 

 
with tan(𝛷𝛷) = 𝑅𝑅 ( 1

𝜔𝜔𝜔𝜔 − 𝜔𝜔𝜔𝜔) = 𝑄𝑄 ( 𝜔𝜔
𝜔𝜔0

− 𝜔𝜔0
𝜔𝜔 ) . The 

particular solution is also called the stationary 
solution. If the generator frequency  𝜔𝜔 is very 
close to the resonance frequency 𝜔𝜔0 , the 
following approximation can be done: 
 

𝑉̂𝑉𝑝𝑝𝑝𝑝𝑝𝑝(∆𝜔𝜔) ≈ 𝑅𝑅𝐿𝐿𝐼𝐼

√1 + (2𝑄𝑄𝐿𝐿
∆𝜔𝜔
𝜔𝜔 )

 

 
where ∆𝜔𝜔 = 𝜔𝜔0 − 𝜔𝜔 . With this the general 
solution is: 
 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉ℎ𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 
 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−𝜔𝜔0𝑡𝑡
2𝑄𝑄𝐿𝐿(𝐶𝐶1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶2𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑅𝑅𝐿𝐿𝐼𝐼𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔+𝛷𝛷)

√1 + tan2(𝛷𝛷)
 

 
Since 𝑄𝑄𝐿𝐿 ≫ 1, we can approximate 𝛼𝛼 ≈ 𝜔𝜔0. For 
𝐶𝐶1 = 𝐶𝐶2 = − 𝑅𝑅𝐿𝐿𝐼𝐼

2  we get: 
 

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉0 (1 − 𝑒𝑒−𝑡𝑡
𝜏𝜏) 

 
with 𝑉𝑉0 ≈ 2𝑅𝑅𝐿𝐿𝐼𝐼𝑔𝑔 = 𝑟𝑟

𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑔𝑔  and 𝜏𝜏 = 2𝑄𝑄𝐿𝐿
𝜔𝜔0

. 

Furthermore, for the beam transient time, 
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𝜏𝜏) − 𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏) (1 − 𝑒𝑒−𝑡𝑡−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
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d
d𝑡𝑡

𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿 (𝐼𝐼𝑔𝑔 (1 − 𝑒𝑒−𝑡𝑡

𝜏𝜏) − 𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏) (1 − 𝑒𝑒−𝑡𝑡−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
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𝜏𝜏  
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−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔0
2𝑄𝑄𝐿𝐿 − 1) 
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By inserting parameters similar to the ILC TDR 
(a fill time of 923 µs, a beam current of 5.8 mA, 
and a loaded quality factor of 5.44E6), we can 
produce the plot as shown in Figure 7, which is 
consistent with our expectations. 
 

 
Figure 7: Cavity voltage during fill time and 
flattop with beam loading for parameters 
similar to the ILC TDR [2]. 

In order to compute the required power during 
the filling and the flattop, we can use 𝑃𝑃 =
1
4

𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑔𝑔

2, which yields: 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿 (1 − 𝑒𝑒−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔0

2𝑄𝑄𝐿𝐿 )
 

 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿

(1 +
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
)

2

 

 
By inserting the following values 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 =
31.5 MV m⁄ ∙ 1.038𝑚𝑚 = 32.7 MV , 𝑄𝑄𝐿𝐿 = 5.44 ∙ 106 , 
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 923 μs, 𝐼𝐼𝑏𝑏0 = 5.8 mA, and 𝛷𝛷𝑏𝑏 = 180° the 
powers read: 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 190 kW 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 190 kW 
 
Of course, it was intentional that the filling and 
flattop powers are the same. The reason is that 

for the ILC it is planned to use klystrons as 
high-power amplifiers, driving multiple cavities 
at once. These amplifiers show a non-linear 
saturation behavior in terms of output power 
versus input power. Thus, when staying at the 
same operation point over the entire RF pulse, 
the LLRF system does not have to cope with any 
non-linearities. 
With the knowledge gained so far, it is possible 
to find a set of equations for optimal 
parameters: 
The optimal coupling reads: 
 

𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜 = 1 +
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
cos(𝛷𝛷𝑏𝑏) 

 
The minimum power for maintaining the cavity 
voltage reads: 
 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐

2

𝑟𝑟
𝑄𝑄 𝑄𝑄0

 

 
The optimum tuning angle reads: 
 

tan(𝛷𝛷𝑜𝑜𝑜𝑜𝑜𝑜) = −
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
sin(𝛷𝛷𝑏𝑏) 

 
 
In case of SRF cavities we can simplify to: 
 

𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟
𝑄𝑄 𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏)

 

 
𝛷𝛷𝑜𝑜𝑜𝑜𝑜𝑜 = −𝛷𝛷𝑏𝑏 

 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏) 

 
In reality the cavities are detuned by the tuning 
angle 𝛷𝛷 . One source for this is Lorentz force 
detuning. This is an effect which is caused by 
strong electro-magnetic fields within the cavity, 
causing the cavity walls to deform slightly. 



11－ 7

By inserting parameters similar to the ILC TDR 
(a fill time of 923 µs, a beam current of 5.8 mA, 
and a loaded quality factor of 5.44E6), we can 
produce the plot as shown in Figure 7, which is 
consistent with our expectations. 
 

 
Figure 7: Cavity voltage during fill time and 
flattop with beam loading for parameters 
similar to the ILC TDR [2]. 

In order to compute the required power during 
the filling and the flattop, we can use 𝑃𝑃 =
1
4

𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑔𝑔

2, which yields: 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿 (1 − 𝑒𝑒−𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔0

2𝑄𝑄𝐿𝐿 )
 

 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿

(1 +
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
)

2

 

 
By inserting the following values 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 =
31.5 MV m⁄ ∙ 1.038𝑚𝑚 = 32.7 MV , 𝑄𝑄𝐿𝐿 = 5.44 ∙ 106 , 
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 923 μs, 𝐼𝐼𝑏𝑏0 = 5.8 mA, and 𝛷𝛷𝑏𝑏 = 180° the 
powers read: 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 190 kW 
 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 190 kW 
 
Of course, it was intentional that the filling and 
flattop powers are the same. The reason is that 

for the ILC it is planned to use klystrons as 
high-power amplifiers, driving multiple cavities 
at once. These amplifiers show a non-linear 
saturation behavior in terms of output power 
versus input power. Thus, when staying at the 
same operation point over the entire RF pulse, 
the LLRF system does not have to cope with any 
non-linearities. 
With the knowledge gained so far, it is possible 
to find a set of equations for optimal 
parameters: 
The optimal coupling reads: 
 

𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜 = 1 +
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
cos(𝛷𝛷𝑏𝑏) 

 
The minimum power for maintaining the cavity 
voltage reads: 
 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐

2

𝑟𝑟
𝑄𝑄 𝑄𝑄0

 

 
The optimum tuning angle reads: 
 

tan(𝛷𝛷𝑜𝑜𝑜𝑜𝑜𝑜) = −
𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝑏𝑏0

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
sin(𝛷𝛷𝑏𝑏) 

 
 
In case of SRF cavities we can simplify to: 
 

𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟
𝑄𝑄 𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏)

 

 
𝛷𝛷𝑜𝑜𝑜𝑜𝑜𝑜 = −𝛷𝛷𝑏𝑏 

 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐
2

4 𝑟𝑟
𝑄𝑄 𝑄𝑄𝐿𝐿,𝑜𝑜𝑜𝑜𝑜𝑜

= 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑏𝑏0 cos(𝛷𝛷𝑏𝑏) 

 
In reality the cavities are detuned by the tuning 
angle 𝛷𝛷 . One source for this is Lorentz force 
detuning. This is an effect which is caused by 
strong electro-magnetic fields within the cavity, 
causing the cavity walls to deform slightly. 

Another source of detuning is microphonics. 
These are mechanicals vibrations caused by e.g. 
pumps, road traffic, etc., which are causing 
constantly changing deformations of the cavity.  
In Figure 8 the vector diagram of generator and 
beam-induced voltages in such a detuned cavity 
are depicted. 
 

 
Figure 8: Vector diagram of generator and 
beam-induced voltages in a detuned cavity [1]. 

From this diagram we can see that 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑔𝑔 +
𝑉𝑉𝑏𝑏 , which we already have covered. But more 
importantly one can also see that: 
 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 
 
This equation, as simple as it is, is very 
powerful. It is true for all times. Typically, at 
pulsed machines, it is convenient to plot the 
cavity, forward and reflected signals. It makes 
it very easy to spot, if something is wrong, e.g. 
with the calibration of a certain channel. 
 
For the following let us consider one more time 
the differential equation for a driven LCR 
circuit and let us write is as follows: 
 

𝑉̈𝑉(𝑡𝑡) + 𝜔𝜔0
𝑄𝑄𝐿𝐿

𝑉𝑉(𝑡𝑡)̇ + 𝜔𝜔0
2𝑉𝑉(𝑡𝑡) = 𝜔𝜔0𝑅𝑅𝐿𝐿

𝑄𝑄𝐿𝐿
𝐼𝐼(̇𝑡𝑡) 

 
The driving current 𝐼𝐼𝑔𝑔 and Fourier component 
𝐼𝐼𝑏𝑏 of a pulsed beam are harmonic with the time 
dependence 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 . Therefore, we separate the 
fast RF oscillation from the real and imaginary 
parts of the field vector (also see Figure 9): 
 

𝑉𝑉(𝑡𝑡) = (𝑉𝑉𝑟𝑟(𝑡𝑡) + 𝑖𝑖𝑉𝑉𝑖𝑖(𝑡𝑡)) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
 

𝐼𝐼(𝑡𝑡) = (𝐼𝐼𝑟𝑟(𝑡𝑡) + 𝑖𝑖𝐼𝐼𝑖𝑖(𝑡𝑡)) ∙ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
 

 
Figure 9: RF signal (red) and its envelope (blue) 
[3]. 

If we now insert this into the equation above 
and omit the second-order time derivatives 
𝑉̈𝑉(𝑡𝑡), we get the first-order differential equation 
for the envelope: 
 

𝑉̇𝑉𝑟𝑟 + 𝜔𝜔1 2⁄ 𝑉𝑉𝑟𝑟 + ∆𝜔𝜔𝑉𝑉𝑖𝑖 = 𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄ 𝐼𝐼𝑟𝑟 
 

𝑉̇𝑉𝑖𝑖 + 𝜔𝜔1 2⁄ 𝑉𝑉𝑖𝑖 + ∆𝜔𝜔𝑉𝑉𝑟𝑟 = 𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄ 𝐼𝐼𝑖𝑖 
 
with the cavity bandwidth 𝜔𝜔1 2⁄ = 𝜔𝜔0

2𝑄𝑄𝐿𝐿
 and the 

cavity detuning ∆𝜔𝜔 = 𝜔𝜔0 − 𝜔𝜔 . We can rewrite 
these two equations in state space formalism as: 
 
d
d𝑡𝑡 (

𝑉𝑉𝑟𝑟
𝑉𝑉𝑖𝑖) = (−𝜔𝜔1 2⁄ −∆𝜔𝜔

∆𝜔𝜔 𝜔𝜔1 2⁄
) ∙ (𝑉𝑉𝑟𝑟𝑉𝑉𝑖𝑖) + (𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄ 0

0 𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄
) ∙ (𝐼𝐼𝑟𝑟𝐼𝐼𝑖𝑖 ) 

 
This is called the cavity differential equation. 
With 𝐴𝐴 = (−𝜔𝜔1 2⁄ −∆𝜔𝜔

∆𝜔𝜔 𝜔𝜔1 2⁄
) , 𝐵𝐵 = (𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄ 0

0 𝑅𝑅𝐿𝐿𝜔𝜔1 2⁄
) , 

𝑥𝑥 = (𝑉𝑉𝑟𝑟𝑉𝑉𝑖𝑖) , and 𝑢𝑢 = (𝐼𝐼𝑟𝑟𝐼𝐼𝑖𝑖 ) , we can write this 
equations in short as: 
 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴 ∙ 𝑥𝑥(𝑡𝑡) + 𝐵𝐵 ∙ 𝑢𝑢(𝑡𝑡) 
 
Until now we have considered the cavity 
differential equation continuous in time, which 
is true for reality. For simulations with e.g. a 
computer, the cavity differential equation 
discreate in time is more useful. It reads: 
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[𝑉𝑉𝑖𝑖,𝑛𝑛𝑉𝑉𝑞𝑞,𝑛𝑛] = [1 − 𝑇𝑇𝜔𝜔1 2⁄ −𝑇𝑇∆𝜔𝜔
𝑇𝑇∆𝜔𝜔 1 − 𝑇𝑇𝑇𝑇1 2⁄

] [𝑉𝑉𝑖𝑖,𝑛𝑛−1𝑉𝑉𝑞𝑞,𝑛𝑛−1] + 𝑇𝑇𝜔𝜔1 2⁄ 𝑅𝑅𝐿𝐿 [
𝐼𝐼𝑖𝑖,𝑛𝑛−1
𝐼𝐼𝑞𝑞,𝑛𝑛−1] 

 
This differential equation was used to program 
a single cavity simulator, which is presented in 
the lecture to demonstrate pulsed operation 
with ILC TDR-like parameters. Furthermore, 
the use cases for a low and a high 𝑄𝑄𝐿𝐿  are 
discussed. Figure 10 shows the GUI of the 
simulator. 
 

 
Figure 10: GUI of single cell cavity simulator. 

4. LLRF Systems 

LLRF systems can be separated into two 
categories: analog LLRF systems and digital 
LLRF systems. 
In the case of the analog LLRF systems, the 
signal detection, signal processing, feedback 
control, and drive signal generation are all 
realized using analog components. These 
systems are typically designed, optimized, and 
built for a specific purpose. When requirements 
change, they are hard to modify. Furthermore, 
one needs additional hardware for data 
monitoring and recording. 
In the case of digital LLRF systems, signals are 
converted from analog to digital using analog to 
digital converters (ADCs). The signal 
processing, including the feedback controller as 
well as the drive signal generation is realized in 
a digital way. The digital drive signal is then 
converted to an analog signal, using digital to 
analog converters (DACs). The advantage of 

digital LLRF systems is that these are very 
flexible. If a requirement changes, the digital 
algorithm can be reprogrammed. There are also 
some modern algorithms, which would be very 
difficult and costly to implement in an analog 
way. Since the signals are already processed 
digitally, it is easy to make them available for 
monitoring and recoding. Furthermore, digital 
systems can be maintained remotely to a great 
extent. 
Generally, digital LLRF systems can be 
subdivided into three different flavors: 1. 19-
inch module-based systems, 2. Crate-based 
system, and 3. Mixed system. 
An example for a 19-inch module-based system 
is the LCLS-II LLRF system. Its prototype 
version is shown in Figure 11. 
 

 
Figure 11: LCLS-II prototype LLRF system at 
FNAL CMTS [4]. 

On the right side of the picture, on can see the 
inside of a 19-inch module. This hardware was 
developed and built specifically for its purpose 
and is very well optimized. 
An example for a crate-based system, is the 
MicroTCA.4-based LLRF system at the 
European XFEL at DESY. Figure 12 shows on 
the left side a system inside the tunnel 
underneath a cryomodule and on the right side 
the crate and four cards as an example. The  
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[𝑉𝑉𝑖𝑖,𝑛𝑛𝑉𝑉𝑞𝑞,𝑛𝑛] = [1 − 𝑇𝑇𝜔𝜔1 2⁄ −𝑇𝑇∆𝜔𝜔
𝑇𝑇∆𝜔𝜔 1 − 𝑇𝑇𝑇𝑇1 2⁄

] [𝑉𝑉𝑖𝑖,𝑛𝑛−1𝑉𝑉𝑞𝑞,𝑛𝑛−1] + 𝑇𝑇𝜔𝜔1 2⁄ 𝑅𝑅𝐿𝐿 [
𝐼𝐼𝑖𝑖,𝑛𝑛−1
𝐼𝐼𝑞𝑞,𝑛𝑛−1] 

 
This differential equation was used to program 
a single cavity simulator, which is presented in 
the lecture to demonstrate pulsed operation 
with ILC TDR-like parameters. Furthermore, 
the use cases for a low and a high 𝑄𝑄𝐿𝐿  are 
discussed. Figure 10 shows the GUI of the 
simulator. 
 

 
Figure 10: GUI of single cell cavity simulator. 

4. LLRF Systems 

LLRF systems can be separated into two 
categories: analog LLRF systems and digital 
LLRF systems. 
In the case of the analog LLRF systems, the 
signal detection, signal processing, feedback 
control, and drive signal generation are all 
realized using analog components. These 
systems are typically designed, optimized, and 
built for a specific purpose. When requirements 
change, they are hard to modify. Furthermore, 
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monitoring and recording. 
In the case of digital LLRF systems, signals are 
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processing, including the feedback controller as 
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a digital way. The digital drive signal is then 
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analog converters (DACs). The advantage of 

digital LLRF systems is that these are very 
flexible. If a requirement changes, the digital 
algorithm can be reprogrammed. There are also 
some modern algorithms, which would be very 
difficult and costly to implement in an analog 
way. Since the signals are already processed 
digitally, it is easy to make them available for 
monitoring and recoding. Furthermore, digital 
systems can be maintained remotely to a great 
extent. 
Generally, digital LLRF systems can be 
subdivided into three different flavors: 1. 19-
inch module-based systems, 2. Crate-based 
system, and 3. Mixed system. 
An example for a 19-inch module-based system 
is the LCLS-II LLRF system. Its prototype 
version is shown in Figure 11. 
 

 
Figure 11: LCLS-II prototype LLRF system at 
FNAL CMTS [4]. 

On the right side of the picture, on can see the 
inside of a 19-inch module. This hardware was 
developed and built specifically for its purpose 
and is very well optimized. 
An example for a crate-based system, is the 
MicroTCA.4-based LLRF system at the 
European XFEL at DESY. Figure 12 shows on 
the left side a system inside the tunnel 
underneath a cryomodule and on the right side 
the crate and four cards as an example. The  

 
Figure 12: MicroTCA.4-based LLRF system at 
the European XFEL at DESY [5]. 

crate offers slots at the front and at the back. In 
the back cards with analog hardware are 
inserted. In the front, cards with digital 
hardware are inserted. The cards are 
interconnected via a connector. This way e.g. the 
down converter card is combined with a 
digitizer card and the LLRF controller card is 
combined, with the vector modulator card. The 
modular nature of such systems allows an easy 
replacement of a broken card. Furthermore, all 
cards are of-the-shelf components. A wide range 
of cards optimized for different purposes are 
commercially available. Another advantage of 
such kind of system is, that it is very compact. 
 
An example for a mixed system is the 
MicroTCA.0-based LLRF system at the cERL at 
KEK. Figure 13 shows on the left side the racks 
of several system within the temperature-
controlled hut and on the right side the 
components of one LLRF system. In this case 
the down conversion is done with a 19-inch 
module, whereas the controller is realized on a 
card within a MicroTCA.0 crate. Such kind of 
system allows the combination of the best of 
both other system flavors. 

 

 
Figure 13: MicroTCA.0-based LLRF system at 
cERL at KEK [6]. 

Figure 14 shows an example system 
architecture of a digital LLRF system. As 
described above, the analog input signals are 
digitized using ADCs. The digital signals are 
processed by e.g. filters and a feedback 
controller on a Field Programmable Gate Array 
(FPGA). It is possible to implement also further 
algorithms and calculations in order to allow 
special functionalities. The generated drive 
signal is converted to analog using a DAC. The 
FPGA is typically interconnected with a local 
CPU. This is basically a small computer, 
connected to the control system of the facility. It 
allows data communication with remotely 
connected computers, which are used either for 
monitoring and operation or for data 
acquisition. 

 
Figure 14: Example system architecture of a 
digital LLRF system. 
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5. Signal Sampling 

Converting analog signals into digital ones is 
crucial for realizing digital LLRF systems. As 
mentioned in the previous sections, ADCs are 
used to this end. As shown in Figure 15, the 
ADC measures the amplitude of an analog 
signal at a certain point in time and outputs the 
according number. This is called a sample point. 
The time between two consecutive sample 
points is the sample period Ts. ADC typically 
have a clock input, which allows to trigger the 
sampling. 
 

 
Figure 15: General idea of digitally sampling an 
analog signal [7]. 

As prerequisite for the following, we need to 
define the coordinates we will be using. When 
dealing with sinusoidal signals, amplitude and 
phase are naturally the quantities used for 
description. It turns out that these are not 
optimal for performing computations on an 
FPGA. For this purpose, the best choice is the 
representation in In-phase (or real part) I and 
Quadrature (or imaginary part) Q. Figure 16 
shows the representation of a coordinate in 
terms of amplitude and phase as well as I and 
Q. The relations are: 
 
 𝐼𝐼 = 𝐴𝐴 cos(𝛷𝛷) 
 
 𝑄𝑄 = 𝐴𝐴 sin(𝛷𝛷) 
 
 A= √𝐼𝐼2 + 𝑄𝑄2 

 
 𝛷𝛷 = atan(𝑄𝑄

𝐼𝐼 ) 
 
 

 
Figure 16: Relation between amplitude and 
phase and in-phase and quadrature 
representations [1]. 

Furthermore, we have to consider the frequency 
of the RF signal 𝑓𝑓𝑅𝑅𝑅𝑅  and the sampling 
frequency 𝑓𝑓𝑠𝑠. If the frequency of the RF signal 
is too high, it cannot be reconstructed (aliasing). 
We have to obey the Nyquist-Shannon theorem. 
It states that, if 
 

𝑓𝑓𝑠𝑠 > 2𝑓𝑓𝑅𝑅𝑅𝑅 
 
a perfect reconstruction of 𝑓𝑓𝑅𝑅𝑅𝑅 is quarantined. 
In the case of ILC, the 𝑓𝑓𝑅𝑅𝑅𝑅 is 1.3 GHz. Typically, 
ADCs can sample with tenths to a few hundreds 
of MHz. In order to overcome this issue, the RF 
signal can be down converted in frequency. In 
general, the RF signal can be described as: 
 

𝑆𝑆𝑅𝑅𝑅𝑅(𝑡𝑡) = 𝐴𝐴𝑅𝑅𝑅𝑅 ∙ sin(2𝜋𝜋 ∙ 𝑓𝑓𝑅𝑅𝑅𝑅 ∙ 𝑡𝑡 + 𝛷𝛷𝑅𝑅𝑅𝑅) 
 
For the following let us assume 𝛷𝛷𝑅𝑅𝑅𝑅 = 0 . 
Furthermore, let us assume we create a second 
signal with a local oscillator with a slightly 
higher frequency (e.g. 𝑓𝑓𝐿𝐿𝐿𝐿  = 1.31 GHz). This 
can described as: 
 

𝑆𝑆𝐿𝐿𝐿𝐿(𝑡𝑡) = 𝐴𝐴𝐿𝐿𝐿𝐿 ∙ sin(2𝜋𝜋 ∙ 𝑓𝑓𝐿𝐿𝐿𝐿 ∙ 𝑡𝑡 + 𝛷𝛷𝐿𝐿𝐿𝐿) 
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It states that, if 
 

𝑓𝑓𝑠𝑠 > 2𝑓𝑓𝑅𝑅𝑅𝑅 
 
a perfect reconstruction of 𝑓𝑓𝑅𝑅𝑅𝑅 is quarantined. 
In the case of ILC, the 𝑓𝑓𝑅𝑅𝑅𝑅 is 1.3 GHz. Typically, 
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of MHz. In order to overcome this issue, the RF 
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general, the RF signal can be described as: 
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For the following let us assume 𝛷𝛷𝑅𝑅𝑅𝑅 = 0 . 
Furthermore, let us assume we create a second 
signal with a local oscillator with a slightly 
higher frequency (e.g. 𝑓𝑓𝐿𝐿𝐿𝐿  = 1.31 GHz). This 
can described as: 
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In order to keep it simple, let us assume 𝐴𝐴𝐿𝐿𝐿𝐿 =
1  and 𝛷𝛷𝐿𝐿𝐿𝐿 = 0 . Now we mix both signals, 
yielding: 
 

𝑆𝑆𝐿𝐿𝐿𝐿∙𝑅𝑅𝑅𝑅(𝑡𝑡) = sin(2𝜋𝜋 ∙ 𝑓𝑓𝑅𝑅𝑅𝑅 ∙ 𝑡𝑡) ∙ sin(2𝜋𝜋 ∙ 𝑓𝑓𝑅𝑅𝑅𝑅 ∙ 𝑡𝑡) 
 
This we can rewrite as: 
 
𝑆𝑆𝐿𝐿𝐿𝐿∙𝑅𝑅𝑅𝑅(𝑡𝑡) =

1
2 (cos(2𝜋𝜋 ∙ (𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑅𝑅𝑅𝑅) ∙ 𝑡𝑡) − cos(2𝜋𝜋 ∙ (𝑓𝑓𝐿𝐿𝐿𝐿 + 𝑓𝑓𝑅𝑅𝑅𝑅) ∙ 𝑡𝑡)) 

 
At this point let us assume we apply a low-pass 
filter, which cuts off the frequency component 
𝑓𝑓𝐿𝐿𝐿𝐿 + 𝑓𝑓𝑅𝑅𝑅𝑅. The resulting signal is: 
 

𝑆𝑆𝐼𝐼𝐼𝐼(𝑡𝑡) =
1
2 (cos(2𝜋𝜋 ∙ (𝑓𝑓𝐼𝐼𝐼𝐼) ∙ 𝑡𝑡)) 

 
where 𝑓𝑓𝐼𝐼𝐼𝐼 = 𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑅𝑅𝑅𝑅 . IF stands for 
intermediate frequency. In our example 𝑓𝑓𝐼𝐼𝐼𝐼  = 
10 MHz. This frequency can easily be sampled 
using an ADC. It is very important to note is 
that this method preserves the original 
amplitude and phase information. Figure 17 
shows a schematic of the down conversion steps. 
 

 
Figure 17: Diagram of the down conversion 
process. 

There are different sample methods. In the 
following we will discuss IQ sampling as well as 
under sampling and over sampling. 
IQ sampling is the most straight forward. In 
this case 𝑓𝑓𝑠𝑠 > 4 ∙ 𝑓𝑓𝐼𝐼𝐼𝐼. This means in terms of I 
and Q: 
 

𝑓𝑓𝐼𝐼𝐼𝐼(0) = 𝑄𝑄 
 

𝑓𝑓𝐼𝐼𝐼𝐼 (
𝜋𝜋
2) = 𝐼𝐼 

 

𝑓𝑓𝐼𝐼𝐼𝐼(𝜋𝜋) = −𝑄𝑄 
 

𝑓𝑓𝐼𝐼𝐼𝐼 (
3𝜋𝜋
2 ) = −𝐼𝐼 

 
We can also identify: 
 

( 𝐼𝐼𝑄𝑄)𝑛𝑛
= (cos(∆𝛷𝛷𝑛𝑛) −sin(∆𝛷𝛷𝑛𝑛)

sin(∆𝛷𝛷𝑛𝑛) cos(∆𝛷𝛷𝑛𝑛)
) ∙ (𝑓𝑓𝐼𝐼𝐼𝐼,𝑛𝑛+1𝑓𝑓𝐼𝐼𝐼𝐼,𝑛𝑛 ) 

 
This method is also illustrated in Figure 18. 
 

 
Figure 18: IQ sampling in the complex plane 
(top) and in time domain (bottom) [8]. 

Let us write down the general ratio between the 
sampling frequency and the intermediate 
frequency as: 
 

𝑓𝑓𝑠𝑠
𝑓𝑓𝐼𝐼𝐼𝐼

= 𝑚𝑚 

 
with ∆𝛷𝛷 = 2𝜋𝜋

𝑚𝑚  (see Figure 19). As we have 
discussed above, the case of 𝑚𝑚 = 4 is called IQ 
sampling. Furthermore, it is defined that 𝑚𝑚 <
2  corresponds to under sampling and 𝑚𝑚 > 2 
corresponds to over sampling. Thus, IQ  
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Figure 19: Example of general IQ sampling, 
here over sampling [8]. 

sampling is a special case of over sampling. In 
general, we can compute I and Q with: 
 
( 𝐼𝐼𝑄𝑄)𝑛𝑛

= 1
sin(∆𝛷𝛷 + 𝛷𝛷) (

cos(𝑛𝑛∆𝛷𝛷 + 𝛷𝛷) −cos((𝑛𝑛 + 1)∆𝛷𝛷 + 𝛷𝛷)
− sin(𝑛𝑛∆𝛷𝛷 + 𝛷𝛷) sin((𝑛𝑛 + 1)∆𝛷𝛷 + 𝛷𝛷) ) ∙ (

𝑦𝑦𝐼𝐼𝐼𝐼,𝑛𝑛+1
𝑦𝑦𝐼𝐼𝐼𝐼,𝑛𝑛 ) 

 
I and Q can also be computed via the following 
sums: 
 

𝐼𝐼 = 2
𝑚𝑚 ∑ 𝑦𝑦𝑛𝑛 cos (

2𝜋𝜋𝜋𝜋
𝑚𝑚 )

𝑚𝑚−1

𝑛𝑛=0
 

 

𝑄𝑄 = 2
𝑚𝑚 ∑ 𝑦𝑦𝑛𝑛 sin (

2𝜋𝜋𝜋𝜋
𝑚𝑚 )

𝑚𝑚−1

𝑛𝑛=0
 

 
The advantage of under sampling are relaxed 
requirements for the ADC due to the lower 
sampling rate. This translates also to relaxed 
requirements for the FPGA due to the lower 
data rate. Both may result in cost reductions. 
Furthermore, in under sampling it is possible to 
detect IF signals with a higher frequency than 
the ADC sampling rate. 
The advantages of over sampling are e.g. to 
have more sampling points per IF period. This 
results in noise reduction due to the averaging 
in the calculation of the I and Q values. Beside 
this, the choice of the IF location in the first 
Nyquist zone is more flexible. 

6. Digital Signal Processing and 
Implementation 

At ILC it is planned to drive the cavities in 
groups of 39 with individual single klystrons. 
One group of cavities with the corresponding 
klystron and LLRF system is called an RF 
station. Since the klystron can receive only one 
input signal, and its output is distributed to the 
multiple cavities, a so-called vector-sum control 
has to implemented within the LLRF system. To 
this end the probe signal of every cavity of the 
RF station is send to the LLRF system and is 
digitized. Then, the I and Q values of the 
individual signals are summed up, resulting in 
the vector sum. Figure 20 shows its 
representation in the complex plane for a case 
of eight cavities. This calculation is realized on 
the FPGA. 
 

 
Figure 20: Representation of the vector sum in 
the complex plane. 

An FPGA is chip, in which arbitrary logic 
circuits can be realized. The major advantage of 
FPGAs is that they can be reprogrammed. 
Modern FPGAs feature in addition processor 
cores, so that demanding computations can be 
performed without occupying resources in 
terms of e.g. logical cells. Since the FPGA acts 
more like an integrated circuit, the time 
required for algorithms or computations is 
defined by its design and is always constant. In 
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Figure 19: Example of general IQ sampling, 
here over sampling [8]. 
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An FPGA is chip, in which arbitrary logic 
circuits can be realized. The major advantage of 
FPGAs is that they can be reprogrammed. 
Modern FPGAs feature in addition processor 
cores, so that demanding computations can be 
performed without occupying resources in 
terms of e.g. logical cells. Since the FPGA acts 
more like an integrated circuit, the time 
required for algorithms or computations is 
defined by its design and is always constant. In 

other words, FPGAs allow actual real-time 
algorithms. (“Real-time” does not mean 
instantaneously. It means the time between the 
input and the output is always the same.) 
Regardless, if working alone or in a team, a 
structured way of work is essential for the 
success of a project. For the implementation of 
the firmware of the FPGA the following 
workflow is recommended. 
First, the requirements of the firmware to be 
implemented have to be defined and 
documented. It is useful to make flow charts of 
algorithms and subcomponents for a better 
understanding and for checking signal widths. 
By this signal overflow can be avoided, which 
otherwise can lead to dangerous situations 
during operation. 
In a next step the code of the firmware is 
created. There are two major possibilities to 
approach this. The first is to write the code (e.g. 
VHDL) by hand. Depending on the project, this 
may take time. But it allows to control and 
optimize every aspect of the algorithm. The 
second way is to use software like e.g. 
MathWorks Simulink. It allows to build 
algorithms via a flow chart. From the flowchart, 
VHDL code is created automatically. This 
makes quick prototyping possible. The 
disadvantage is, that one does not have full 
control over predefined subcomponents. Thus, 
optimization is impossible in some cases. 
Furthermore, the automatically generated 
VHDL code is very hard or sometimes even 
impossible to be understood by humans. Of 
course, it is also possible to combine both 
approaches of code generation. 
After the code was generated, a so-called test 
bench should be programmed. This is additional 
code, which allows to test the VHDL code in a 
simulator. During such a test, all possible 
inputs should be fed to the algorithm and the 

output should be consistent with the 
requirements. This way malfunctions of the 
algorithm in some edge cases can be found and 
fixed. 
After testing within the test bench was 
successful, the code should be tested and 
debugged on the target hardware. Target 
hardware means ideally test hardware, which is 
identical to the production hardware. This step 
is very important, since the simulation is only a 
rough approximation to reality. When the 
testing and debugging on the target hardware 
was successful, the code can be deployed to the 
production hardware. 
If requirements for the firmware have changed, 
the entire implementation and testing workflow 
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7. Controller Theory 

The controller is the essential part of the 
firmware. Its design and setup have a great 
impact on what RF stability can be achieved in 
the end. In order to talk about controller theory, 
we first have to define, what a transfer function 
is. It is the ratio of the Laplace-transforms of the 
output signal 𝑌𝑌(𝑠𝑠) and the input signal X(𝑠𝑠) of 
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It reads: 
 

𝐻𝐻(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) 

 
Figure 21: Definition of the transfer function 
[9]. 

𝐻𝐻(𝑠𝑠) is a representation of the system, since we 
can compute the output for a given input. 
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The Laplace transform reads: 
 

𝐻𝐻(𝑠𝑠) = ∫ ℎ(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠d𝑡𝑡
+∞

𝑡𝑡=0
 

 
Note that ℎ(𝑡𝑡) is in the time domain and 𝐻𝐻(𝑠𝑠) 
in the complex frequency domain. The inverse 
Laplace transform reads: 
 

𝑓𝑓(𝑡𝑡) = 𝐿𝐿−1{𝐹𝐹(𝑠𝑠)} = 1
2𝜋𝜋𝜋𝜋∫ 𝐹𝐹(𝑠𝑠) ∙ 𝑒𝑒𝑠𝑠𝑠𝑠d𝑠𝑠

𝛼𝛼+𝑗𝑗𝑗𝑗

𝑠𝑠=𝑎𝑎−𝑗𝑗𝑗𝑗
 

 
Figure 22 shows the properties of the Laplace 
transform as well as Laplace transform pairs. 
 

 
Figure 22: Properties of Laplace transform and 
Laplace transform pairs [9]. 

 
In order to learn how to obtain a transfer 
function, let us consider an RC circuit as an 
example as shown in Figure 23. 
 
Let us write down the current: 
 

𝐼𝐼(𝑡𝑡) = 𝐶𝐶 ∙ d𝑢𝑢𝑐𝑐
(𝑡𝑡)

d𝑡𝑡 = 𝑢𝑢(𝑡𝑡) − 𝑢𝑢𝑐𝑐(𝑡𝑡)
𝑅𝑅  
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Figure 23: RC circuit [9]. 

It can be rearranged to: 
 

d𝑢𝑢𝑐𝑐(𝑡𝑡)
d𝑡𝑡 + 𝑢𝑢𝑐𝑐(𝑡𝑡)

𝑅𝑅𝑅𝑅 = 𝑢𝑢(𝑡𝑡)
𝑅𝑅𝑅𝑅  

 
With the Laplace transform 𝑓𝑓′(𝑡𝑡) ↔ 𝑠𝑠𝑠𝑠(𝑠𝑠)  we 
get: 
 

𝑠𝑠𝑈𝑈𝑐𝑐(𝑠𝑠) +
𝑈𝑈𝑐𝑐(𝑠𝑠)
RC = 𝑈𝑈(𝑠𝑠)

𝑅𝑅𝑅𝑅  

 
And with this: 
 

𝑈𝑈𝑐𝑐(𝑠𝑠)
𝑈𝑈(𝑠𝑠) =

1
𝑅𝑅𝑅𝑅

𝑠𝑠 + 1
𝑅𝑅𝑅𝑅

= 𝐻𝐻(𝑠𝑠) 

 
which is the transfer function of the RC circuit. 
From this we can deduct the system output from 
a given input. Let us assume a unit step 
𝑈𝑈(𝑠𝑠) = 1

𝑠𝑠: 
 

𝑈𝑈𝑐𝑐(𝑠𝑠) =
1
𝑅𝑅𝑅𝑅

𝑠𝑠 + 1
𝑅𝑅𝑅𝑅

1
𝑠𝑠 

 
And from this the system output in time 
domain, with 𝑅𝑅𝑅𝑅 = 𝜏𝜏 being the time constant: 
 

𝑢𝑢𝑐𝑐(𝑡𝑡) = ∫ 1
𝜏𝜏 𝑒𝑒

−𝑥𝑥
𝜏𝜏 d𝑥𝑥

𝑡𝑡

0
= (𝑒𝑒

−𝑥𝑥
𝜏𝜏 )| 𝑥𝑥 = 𝑡𝑡

𝑥𝑥 = 0 = 1 − 𝑒𝑒
−𝑡𝑡
𝜏𝜏  
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If we go back to the differential equation 
 

d𝑢𝑢𝑐𝑐(𝑡𝑡)
d𝑡𝑡 + 𝑢𝑢𝑐𝑐(𝑡𝑡)

𝑅𝑅𝑅𝑅 = 𝑢𝑢(𝑡𝑡)
𝑅𝑅𝑅𝑅  

 
and solve it, we will find that 𝑢𝑢𝑐𝑐(𝑡𝑡) = 1 − 𝑒𝑒

−𝑡𝑡
𝜏𝜏 . 

 
In the next step we want to transform the 
transfer function 𝐻𝐻(𝑠𝑠)  from the complex 
frequency domain to the transfer function in 
frequency domain 𝐻𝐻(𝑗𝑗𝑗𝑗). 
 

𝐻𝐻(𝑠𝑠)|𝑠𝑠=𝑗𝑗𝑗𝑗 = 𝐻𝐻(𝑗𝑗𝑗𝑗) = |𝐻𝐻(𝑗𝑗𝑗𝑗)|𝑒𝑒𝑗𝑗 𝐻𝐻(𝑗𝑗𝑗𝑗) = |𝐻𝐻(𝑗𝑗2𝜋𝜋𝑓𝑓)|𝑒𝑒𝑗𝑗 𝐻𝐻(𝑗𝑗2𝜋𝜋𝜋𝜋) 

 
In this equation we can nicely see the 
separation of the amplitude in dependence of 
the frequency |𝐻𝐻(𝑗𝑗2𝜋𝜋𝜋𝜋)| and the phase in 
dependence of the frequency 𝑒𝑒𝑗𝑗 𝐻𝐻(𝑗𝑗2𝜋𝜋𝜋𝜋) . When 
plotting these two functions, we get something 
like what is shown in Figure 24. These plots are 
called Bode plots. 
 

 
Figure 24: Example of Bode plots [9]. 

If we come back to the RC example and assume 
a time constant of 1 ms, we get Bode plots as 
shown in Figure 25. 
 

 
Figure 25: Actual Bode plots for the RC example 
with a time constant of 1 ms [9]. 

Let us consider the case of a sinusoidal signal as 
an input signal. We will find, that e.g. for an 
input of cos(2𝜋𝜋 ∙ 50𝑡𝑡), we will get an output of 
|𝐻𝐻(𝑗𝑗𝑗𝑗)|cos(2𝜋𝜋 ∙ 50𝑡𝑡 + 𝐻𝐻(𝑗𝑗𝑗𝑗)) , where |𝐻𝐻(𝑗𝑗𝑗𝑗)|  is 
the amplitude of the output signal and 𝐻𝐻(𝑗𝑗𝑗𝑗) 
its phase shift. Software like MathWorks 
Simulink allows us to simulate such a system. 
In the case shown in Figure 26, the input signal 
has a frequency of 160 Hz. 
 

 
Figure 26: Signal simulation of a 160 Hz sine 
wave through a RC circuit with a time constant 
of 1000 ms [9]. 
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From the figure we can clearly see the phase 
shift, but we can also recognize a change in 
amplitude. When calculating the output signal, 
we find that it reads: 
 

𝑢𝑢𝑐𝑐(𝑡𝑡)𝑓𝑓=160 Hz = 1
√2

cos (2𝜋𝜋 ∙ 160𝑡𝑡 − 𝜋𝜋
4) 

 
If we increase the frequency of the input signal 
to 600 Hz, we will find that: 
 

𝑢𝑢𝑐𝑐(𝑡𝑡)𝑓𝑓=600 Hz = 1
4 cos (2𝜋𝜋 ∙ 600𝑡𝑡 − 5𝜋𝜋

12) 

 
with the corresponding simulation shown in 
Figure 27. 
 

 
Figure 27: Signal simulation of a 600 Hz sine 
wave through a RC circuit with a time constant 
of 1000 ms [9]. 

This means that the amplitude and the phase 
shift of the output signal depends on the 
frequency of the input signal. 
We can model a cavity using a RCL circuit, as 
already seen above. It its case we can write: 
 

𝑍𝑍(𝑠𝑠) =
𝑠𝑠
𝐶𝐶

𝑠𝑠2 + 1
𝑅𝑅𝑅𝑅 𝑠𝑠 + 𝜔𝜔0

2
=

𝑅𝑅𝜔𝜔0
𝑄𝑄 𝑠𝑠

𝑠𝑠2 + 1
𝑄𝑄 𝑠𝑠 + 𝜔𝜔0

2
 

 
If we assume a resonance frequency of 1.3 GHz 
and a quality factor of 𝑄𝑄 = 1.3 ∙ 106, we get the 
Bode plots as shown in Figure 28. This case 
corresponds to a SRF cavity. 
 

 
Figure 28: Bode plot for a 1.3 GHz cavity with 
Q=1.3E6 [9]. 

In case of a normal conducting cavity, the 
quality factor is much lower. Let us assume  𝑄𝑄 =
7000 and compare both Bode plots in Figure 29. 
We can clearly see that the bandwidth of the 
cavity is related with the quality factor. 
 
 

 
Figure 29: Bode plot for a 1.3 GHz cavity with 
Q1=1.3E6 and Q2=7E3 [9]. 

Until now we have considered the transfer 
function for a single element or device. In the 
following we want to describe a basic control 
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Q1=1.3E6 and Q2=7E3 [9]. 

Until now we have considered the transfer 
function for a single element or device. In the 
following we want to describe a basic control 

system in a transfer function representation, as 
shown in Figure 30. There 𝐾𝐾(𝑠𝑠) represents the 
controller, P(𝑠𝑠) the plant one wants to control, 
and F(𝑠𝑠) the detector or sensor, which is used 
to measure the response of the plant. 
 

 
Figure 30: Schematic of a simple control system 
in a transfer function representation [9]. 

In order to be able to calculate the transfer 
function of a whole system, we need to know 
how to combine the transfer functions of single 
elements. Figure 31 shows an overview of the 
rules for the serial, the parallel and the 
feedback case. 
 

 
Figure 31: Rules on how to combine single 
transfer functions [9]. 

Following these rules, let us calculate the 
transfer function of the feedback loop shown in 
Figure 30. To this end, we first combine 𝐾𝐾(𝑠𝑠) 
and 𝑃𝑃(𝑠𝑠) . Then we apply the rule for the 
feedback system. Figure 32 shows the process 
step by step. 

 

 
Figure 32: Calculating the transfer function of a 
simple feedback system [9]. 

In the real world, feedback systems are much 
more complicated. It is not uncommon to have 
systems with several loops as shown in Figure 
33. 
 

 
Figure 33: Example of a more complicated 
feedback system with multiple loops [9]. 

The transfer function of such a system can be 
computed by using the Mason’s Gain Rule. In it 
𝑀𝑀 is the transfer function of the system. 𝑀𝑀𝑗𝑗 is 
the gain of one forward path. 𝑗𝑗 is an integer 
representing the forward paths in the system. 
∆𝑗𝑗=1− the loops remaining after removing path 
𝑗𝑗 . If none remain, then ∆𝑗𝑗= 1. ∆= 1 + 𝛴𝛴  non-
touching loop gains taken two at a time −𝛴𝛴 
non-touching loop gains taken three at a time 
+𝛴𝛴 non-touching loop gains taken four at a time 
− etc. The resulting rule reads: 
 

𝑀𝑀 =
∑ 𝑀𝑀𝑗𝑗∆𝑗𝑗𝑗𝑗

∆  



11－ 18

In the following let us evaluate the impact of a 
feedback loop in comparison to the open loop 
case. To this end we will compare the transfer 
functions. Until now we have considered ideal 
systems. In the real world, we have to deal with 
disturbances. Thus, let us add a disturbance to 
the simple feedback system and write down the 
transfer function. Figure 34 shows this for the 
closed loop case on the left and the open loop 
case on the right. 
 

 
Figure 34: Closed and open loop systems with 
disturbances [9]. 

Let us give the plant in both cases some 
meaning and write down the transfer functions 
in the complex frequency domain as well as in 
the frequency domain (see Figure 35). 
 

 
Figure 35: Transfer functions of closed and open 
loop systems with disturbances [9]. 

A good way of comparing these results is to look 
at the Bode plots. Figure 36 shows the closed 
and open loop cases combined. In the closed loop  

 
Figure 36: Combined Bode plots of the closed 
and open loop cases [9]. 

case, the proportional gain KP is varied. We can 
clearly recognize an offset of the graphs for 𝑓𝑓 →
0 Hz. In case of the open loop, there is no 
disturbance rejection for low frequencies. For 
higher frequencies we do see a rejection, but 
this is only due to the chosen low-pass behavior 
of the plant. In the feedback case, the higher the 
gain is chosen, the more disturbances are 
rejected, which holds for lower and also higher 
frequencies. 
Beside the ability to suppress disturbances, a 
feedback loop has to be stable. There are several 
stability criteria: e.g. root locus, solving the 
characteristic equation, the Routh-Hurwitz 
stability criterion, etc. The most simple and 
intuitive definition of stability is: A stable 
system is a dynamic system with a bounded 
response to a bounded input (see Figure 37). 
 

 
Figure 37: Schematic of a stable and a unstable 
dynamic system [9]. 

Since we cannot try all bounded input signals 
on our system, let us take a look at the 
characteristic equation. It is the denominator of 
the transfer function. 
 

𝐻𝐻(𝑠𝑠) = 𝐾𝐾(𝑠𝑠 − 𝑧𝑧1)(𝑠𝑠 − 𝑧𝑧2) … (𝑠𝑠 − 𝑧𝑧𝑛𝑛−1)(𝑠𝑠 − 𝑧𝑧𝑛𝑛)
(𝑠𝑠 − 𝑝𝑝1)(𝑠𝑠 − 𝑝𝑝2) … (𝑠𝑠 − 𝑝𝑝𝑛𝑛−1)(𝑠𝑠 − 𝑝𝑝𝑛𝑛)  



11－ 19

In the following let us evaluate the impact of a 
feedback loop in comparison to the open loop 
case. To this end we will compare the transfer 
functions. Until now we have considered ideal 
systems. In the real world, we have to deal with 
disturbances. Thus, let us add a disturbance to 
the simple feedback system and write down the 
transfer function. Figure 34 shows this for the 
closed loop case on the left and the open loop 
case on the right. 
 

 
Figure 34: Closed and open loop systems with 
disturbances [9]. 

Let us give the plant in both cases some 
meaning and write down the transfer functions 
in the complex frequency domain as well as in 
the frequency domain (see Figure 35). 
 

 
Figure 35: Transfer functions of closed and open 
loop systems with disturbances [9]. 

A good way of comparing these results is to look 
at the Bode plots. Figure 36 shows the closed 
and open loop cases combined. In the closed loop  

 
Figure 36: Combined Bode plots of the closed 
and open loop cases [9]. 

case, the proportional gain KP is varied. We can 
clearly recognize an offset of the graphs for 𝑓𝑓 →
0 Hz. In case of the open loop, there is no 
disturbance rejection for low frequencies. For 
higher frequencies we do see a rejection, but 
this is only due to the chosen low-pass behavior 
of the plant. In the feedback case, the higher the 
gain is chosen, the more disturbances are 
rejected, which holds for lower and also higher 
frequencies. 
Beside the ability to suppress disturbances, a 
feedback loop has to be stable. There are several 
stability criteria: e.g. root locus, solving the 
characteristic equation, the Routh-Hurwitz 
stability criterion, etc. The most simple and 
intuitive definition of stability is: A stable 
system is a dynamic system with a bounded 
response to a bounded input (see Figure 37). 
 

 
Figure 37: Schematic of a stable and a unstable 
dynamic system [9]. 

Since we cannot try all bounded input signals 
on our system, let us take a look at the 
characteristic equation. It is the denominator of 
the transfer function. 
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A necessary and sufficient condition for a 
feedback system to be stable is that all the poles 
(𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3,… , 𝑝𝑝𝑛𝑛) of the system transfer function 
have negative real parts. (𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3,… , 𝑧𝑧𝑛𝑛 ) are 
called the zeros of the transfer function. Thus, 
the following system would be stable: 
 

𝐻𝐻(𝑠𝑠) = 𝑠𝑠 + 1.5
𝑠𝑠3 + 4𝑠𝑠2 + 6𝑠𝑠 + 4

= 𝑠𝑠 − (−1.5)
[𝑠𝑠 − (−1 + 𝑖𝑖)][𝑠𝑠 − (−1 − 𝑖𝑖)][𝑠𝑠 − (−2)] 

 
Three poles: −1 ± 𝑖𝑖 and -2. 
And the following system would be unstable: 
 

𝐻𝐻(𝑠𝑠) = 𝑠𝑠 + 1.5
𝑠𝑠3 − 2𝑠𝑠2 + 4

= 𝑠𝑠 − (−1.5)
[𝑠𝑠 − (1 + 𝑖𝑖)][𝑠𝑠 − (1 − 𝑖𝑖)][𝑠𝑠 − (−2)] 

 
Three poles: 1 ± 𝑖𝑖 and -2. 
Figure 38 shows the poles and zeros in the pole-
zero map. The right half plane poles are 
unstable. 
 

 
Figure 38: Example of a pole-zero map [9]. 

In some cases, the characteristic equation can 
be very complicated and it is not easy to 
evaluate the poles. In addition, one also wants 
to know, if a given feedback system is stable at 
a certain feedback gain. To answer this 
question, it is popular to evaluate the Bode plot. 

The closed loop is stable, if the open loop gain at 
-180 degree (or -540 degree, etc.) is less than 1 
or 0 dB (see Figure 39). Furthermore, by this 
method it is also possible to evaluate the gain 
margin, since a larger margin means a better 
robustness. 
 

 
Figure 39: Example bode plot for a stable and 
unstable system [9]. 

Another way to evaluate the stability is to plot 
the Nynquist diagram. It is the plot of the 
imaginary part versus the real part of the 
transfer function in the frequency domain. An 
example is shown in Figure 40. 
 

 
Figure 40: Example of a Nyquist diagram [9]. 
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In real-world systems the proportional and 
integral (PI) controller is very popular. It can be 
modeled as shown Figure 41. In some cases, a 
differential part is added, extending it to a PID 
controller. 
 

 
Figure 41: Modelling of the PI controller [9]. 

A more modern and very useful type of 
controller is the multiple input multiple output 
(MIMO) controller (see Figure 42). Beside the 
PID controller functionality, it can also be used 
e.g. for the cancellation of cross coupling 
between inputs as well as for the cancellation of 
a passband mode. 
 

 
Figure 42: Feedback loop with MIMO controller 
[9]. 

8. Example Features of an LLRF System 
Typically, an LLRF system is a subsystem of a 
facility as e.g. a test stand or a large scale 

particle accelerator. At such facilities a personal 
protection system (PPS) is required. The goal is 
to prevent any harm, injury to or death of 
humans working at the facility of being around 
it. E.g., if a particle accelerator is being 
operated, it is forbidden to enter the accelerator 
tunnel. If someone opens a door to the tunnel 
during operation, the operation is stopped 
automatically. In addition to a PPS, especially 
in larger scale facilities, a machine protection 
system (MPS) is implemented. Its goal is to 
prevent the accelerator or in most cases 
subcomponents from damaging or destroying 
itself. If e.g. arcing in a klystron is detected, the 
LLRF system receives a signal to stop the 
generation of the drive signal. Since in such a 
case no accelerating field can be generated 
anymore in the cavities, the energy of 
transmitted beam would be wrong, resulting in 
downstream beam loss. In order to prevent this, 
the beam is also turned off automatically in 
such a case. The signal triggering the stop of 
operation of subsystems is called an interlock 
signal. All LLRF systems must have interlock 
capability. Since it is imperative to work 
reliably, such interlock functionality should be 
hardwired in hardware or firmware. Figure 43 
shows a possible solution. Note, that an 
implementation in software is not reliably 
enough. 
 

 
Figure 43: Possible implementation of interlock 
functionality in firmware. 

Beside this, the LLRF system should have a 
certain degree of exception prevention and 
handling. A simple example is to implement a 
limiter on the drive signal. This way e.g.  
overdriving the high-power amplifier or 
quenching a cavity can be prevented. In 
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such a case. The signal triggering the stop of 
operation of subsystems is called an interlock 
signal. All LLRF systems must have interlock 
capability. Since it is imperative to work 
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hardwired in hardware or firmware. Figure 43 
shows a possible solution. Note, that an 
implementation in software is not reliably 
enough. 
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functionality in firmware. 

Beside this, the LLRF system should have a 
certain degree of exception prevention and 
handling. A simple example is to implement a 
limiter on the drive signal. This way e.g.  
overdriving the high-power amplifier or 
quenching a cavity can be prevented. In 

addition, it is advisable to implement a limiter 
on the set point amplitude. This way an 
unexperienced operator of the LLRF system 
cannot enter values, which could be potentially 
dangerous. An example for active exception 
handling would be quench detection. The loaded 
quality factor 𝑄𝑄𝐿𝐿 of a cavity can be calculated 
from the pickup signal during the decay time. In 
case of a quench, the 𝑄𝑄𝐿𝐿  value drops 
significantly. The LLRF system can compute the 
𝑄𝑄𝐿𝐿 value for every RF pulse and when it falls 
below a predefined threshold, the drive signal is 
cut, and an interlock signal is generated. 
At ILC it is planned to utilize 9-cell SRF cavities 
for beam acceleration. Since these cavities have 
nine cells, they have nine different eigenmodes. 
For beam acceleration only the so-call 𝜋𝜋-mode 
is suitable. Thus, the goal is to feed all power 
only to this mode. All other modes should be 
suppressed. This can be achieved by e.g. Notch 
filters at the ADCs for the 8𝜋𝜋9 -mode. It is also 
possible to add an additional filter for the 7𝜋𝜋9 -
mode in a MIMO controller, as mentioned 
above. 
Another feature typically implemented within 
the LLRF system is the fast cavity tuning. SRF 
cavities are built and assembled at room 
temperature, but operated at 2 K. During the 
cooldown the cavity is typically relaxed in order 
to prevent any possibilities of unwanted 
deformations. The cavity was pre-tuned at room 
temperature to roughly reach the design 
frequency at 2 K. In order to actually reach the 
design frequency, the cavity can be elastically 
deformed in a controlled manner, using motor 
tuners. These motors are slow stepper motors 
and are left in position once the cavity has been 
tuned. Beside the motor tuners, the cavity is 
also equipped with a piezo tuner. This is used 
for the compensation of fast frequency changes, 
induced by e.g. Lorentz force detuning or 

microphonics. Figure 44 shows pictures of three 
different piezo configurations. 
 

 
Figure 44: Three different of piezo 
configurations on cavities during the S1-global 
project [10]. 

As stated at the beginning, the goal of the LLRF 
system is to control the amplitude and phase 
within cavities to be better than the required 
stability. Thus, a LLRF system should have the 
feature of computing the RF stability. 
Depending on the facility, different kinds of 
stability have to be computed. In a single cavity 
control scheme, of course the stability of the 
single cavity is important. For the amplitude 
the stability is typically defined as ∆𝐴𝐴/𝐴𝐴, where 
∆𝐴𝐴 is the standard deviation of the amplitude 
and 𝐴𝐴 the average of the amplitude. For the 
phase ∆𝛷𝛷 is used. These values are computed 
only for a certain time period, as e.g. for the 
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flattop region or the beam transient time. In 
this case the stability is called intra train 
stability. In case of vector sum control, the 
stability of the vector sum amplitude and phase 
is computed in the same way. It is also possible 
to define a measure for the stability from pulse 
to pulse. This is called the inter train stability.  

9. Summary 
Due to the limited length of this lecture, it is 

impossible to show and explain all important 
aspects of LLRF in detail. It is a subject one has 
to study for an extended time. Nevertheless, 
with the overview given, everyone who is 
planning to get involved with LLRF should now 
understand what he or she should learn. First, 
learn about the target facility. What are the 
requirements for e.g., stability, etc.? Plan 
carefully, how the LLRF system can be 
integrated. Second, learn the required 
theoretical background as e.g. cavity theory, RF 
theory, signal processing theory, controller 
theory, etc. Third, learn about analog hardware. 
Fourth, learn about digital hardware. Fifth, 
learn about firmware. Sixth, learn about 
software. 
Every of these topics is an individual field of 
expertise. But as an LLRF expert, one has to 
know the most important aspects of every topic 
in order to design, implement, commission, and 
operate an LLRF system. 
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