高エネルギー加速器セミナー OHO'05

ニュートリノファクトリー(4)

~ 高強度・高輝度ミューオン源への応用 ~

佐藤朗(阪大)

1. はじめに

将来より高統計かつ超精密測定が求められるで あろう素粒子実験にとって、大強度陽子ビームに より生成される2次ビームを効率よく収集、さら に加工し、実験の目的に適した質と量のビームを 得るための技術確立することは重要な開発要素 の一つである。イオン化冷却、位相空間回転は、 ニュートリノ・ファクトリやミューオン・コライ ダーに向けて、世界的にR&Dが進められている その例である。本稿では、これらの技術をミュー オン物理学の分野に応用し、レプトン・フレーバ ー非保存過程の探索実験を目標とする PRISM 計 画について紹介する。PRISM では、ニュートリ ノ・ファクトリ・フロントエンドの技術のうち、 特に、パイオン捕獲、位相空間回転によるエネル ギーの単色化を応用し、大強度・高輝度・高純度 のミューオンビームを生成する。今回は、このミ ューオンビーム生成方法を概説するとともに、特 に現在建設が進んでいる FFAG を用いた位相空間 回転器について詳しく紹介する。

第1章では、その背景となる素粒子物理につい て概説し、続く第2章において物理実験とそこで 要求されるビームの性質について議論する。第3 章では、PRISM計画の概説、最後の第4章におい て位相空間回転器について、少し詳しく議論す る。

2. ミューオンのレプトン・フレーバー 非保存過程探索実験

素粒子物理学におけるミューオン物理の研究ア プローチは大きく2つのグループに大別できる。 1つは、ミューオンに関する物理量の精密測定で あり、ミューオン異常磁気能率(g-2)や寿命の精 密測定、電子双極子(EDM)探索などがこれに相 当する。もう一つは、ミューオン崩壊過程の中で 現在の素粒子物理学の標準理論(以下、単に標準 理論と呼ぶ)において禁止されている過程(ミュ ーオン稀崩壊過程)を探索するアプローチであ る。この禁止過程が標準理論の予想値よりも高い 崩壊率で発見されれば、それは、すなわち、標準 理論を超える新しい物理の存在を示唆すること となる。PRISM 計画は、この後者のアプローチに より、新物理の発見を目指している。

本章では、ミューオン稀崩壊過程のうち、特に、 PRISM が実験で探索しようとするレプトン・フレ ーバー保存則を破る(LFV: Lepton Flavor Violating)過程について、その物理的意義と実験 方法の概要について簡単に紹介する。

2.1. 標準理論でのミューオン LFV 過程

標準理論は、現在までの素粒子実験の結果のほと んど全てを説明することに成功している。ニュー トリノの質量をゼロと想定した標準理論では、レ プトンのフレーバーは反応過程の前後で保存さ れなければない。したがって、レプトン・フレー バーを保存しない、次のようなミューオンの崩壊 過程は、標準理論により禁止される。

- 1) $\mu^+ \rightarrow e^+ \gamma$,
- 2) μ^- N→e⁻ N (原子核中)、
- 3) $\mu^+ \rightarrow e^+ e^+ e^-$

現在では、ニュートリノ振動実験などの結果から

図1:ミューオン及びK中間子における LFV 過程探索の歴史と計画中実験の目標到 達精度

ニュートリノが有限の質量を持つことを知って いるので、そのように標準理論を拡張した場合 は、極僅かながらこのような崩壊過程が起こるこ とが予言される。しかし、そのオーダーは 10⁻⁵⁰ 程度と非常に小さいので、実験的に観測すること はできない。実際、このような稀崩壊過程の探索 実験が 1940 年代以来行われてきた (図1)。崩壊 比の上限値は年々更新され、10⁻¹²程度までの精度 で実験が行われているが、未だ、このような崩壊 過程が起こった実験的証拠はない。

2.2. ミューオン LFV 過程と新物理

標準理論は非常に高い精度でその正しさが実 験的に検証されているが、標準理論だけではまだ 完全に説明できない基本的な問題点がいくつか 存在する。したがって、多くの物理学者は現在の 標準理論が自然の究極の理論ではなく、より高い レベルで自然を記述する素粒子理論が存在する と考えおり、標準理論を超える新しい理論の探求 を進めている。

そのような理論候補の一つに、超対称性理論 (SUSY)がある。超対称性とは、標準理論におけ る全ての粒子(クォーク、レプトン、ゲージ・ボ ゾン、ヒッグス粒子)に対して、スピンが1/2異 なるパートナー粒子(超対称性粒子)が存在する と仮定することで、これらの粒子群により導入さ れる新たな対称性を意味する。この超対称性の導 入による力の大統一の可能性が示唆されている。 これを超対称性大統一理論(SUSY-GUT)と言う。 最近の実験データを反映した理論によると、力の 結合定数の大きさはエネルギーと共に変化する。 標準理論では、電磁相互作用、弱い相互作用、強

図3: SUSY-GUT SU(5)による、μ⁻N→e⁻ N過程(チタン原子核中)の崩壊比。横軸 は、電子の超対称性粒子の質量。

い相互作用の各結合定数は高いエネルギー領域 においても3つが等しくなることはない。しか し、超対称性理論の予言では、3つの結合定数が 10¹⁶GeV という超高エネルギー領域で等しくな り、力の大統一が期待される。力を一つの理論で 統一的に記述することは、素粒子物理学の大命題 の一つであり、超対称性が発見されればこれに向 けて大きな一歩を踏み出すこととなる。

SUSY-GUT では、レプトン族の超対称性粒子

図4:右巻きニュートリノを導入した SUSY 理論によるμ⁺→e⁺γ過程の崩壊比計算。 実験の上限値は MEGA 実験のデータであ る。

(slepton)が世代間で混合することで、ミューオン のLFV過程の確率が増大すると考えられる(図 2)。SUSY GUT SU(5)による、 μ N \rightarrow e N \oplus R (チタン原子核中)崩壊比の理論予想値を図3に 示した。崩壊比 10⁻¹⁴-10⁻¹⁸ と実験的に十分観測可 能なレベルまで確率が上がることが予言されて おり、現在の実験到達精度をあと数桁上げること で超対称性の証拠が発見される可能性が高い。

また、重い右巻きマヨナラニュートリノの存在 を仮定した SUSY 理論では、ニュートリノの混合 により、slepton の混合が引き起こされるとされて いる。したがって、ミューオン LFV 過程の崩壊比 の測定により、ニュートリノ質量の情報が得られ ることが指摘されている(図4)。

2.3. ミューオン・電子転換過程探索実験

このようにミューオンの LFV 過程は、標準理論を 超える新しい物理現象に高い感度を持ち、近年理 論及び実験物理学者から強い関心が注がれてい る。ミューオンの LFV 過程には前節で述べたよう にいくつかの反応が挙げられるが、ここでは、 PRISM でその探索が計画されている原子核中で のミューオン・電子転換過程及びその実験方法に ついて解説する。

2.3.1. ミューオン・電子転換過程とは

負の電荷を持つミューオンが物質中で静止する と、物質を構成する原子核に捕獲され、ミューオ ン原子となる。このとき原子核中でのミューオン は、X線を放出しながら短時間(~10⁻¹³秒)のう ちに、ミューオン原子の基底状態の軌道まで遷移 する。その後、ミューオンはこの軌道上で

 $\mu^- \rightarrow e^- v_\mu v_e$

のように崩壊するか、または、原子核に吸収され る過程、

 $\mu^- + (A, Z) \rightarrow \nu_u + (A, Z - 1)$

かのどちらかの運命をたどる。しかし、標準理論 を超えた新しい物理が存在すると、ニュートリノ の放出を伴わない原子核吸収過程、

 $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$

が起こることと期待される。この反応過程をミュ ーオン原子核中のミューオン・電子転換過程と呼 ぶ。この過程では、反応前の電子のフレーバー数 $L_e とミューオンのフレーバー数L_\mu$ がそれぞれ (L_e , L_μ) = (0, +1) であるのに対して、 反応後は(+1, 0) となり、反応の前後で L_e 、 L_μ ともにレプトン・フレーバー数が保存してい ない。

このミューオン・電子転換過程の崩壊比は次の ように定義される。

 $B(\mu^- + (A, Z) \rightarrow e^- + (A, Z))$

 $\equiv \frac{\Gamma(\mu^- + (A, Z) \rightarrow e^- + (A, Z))}{\Gamma(\mu^- + (A, Z))}$

 $\Gamma(\mu^- + (A, Z) \rightarrow capture)$

ここで、Γは崩壊幅を意味する。

ミューオン・電子転換過程により放出される電 子のエネルギー $E_{\mu e}$ は、

 $E_{\mu e} = m_{\mu} - B_{\mu} - E_{rec}^0$

である。ここで、 m_{μ} はミューオンの静止質量、 B_{μ} 及び E^{0}_{rec} はそれぞれ、ミューオン原子基底 状態の束縛エネルギー及び反跳原子のエネルギ ーを表す。反跳原子のエネルギーは、反跳原子の 質量を M_{A} とすると、

$$E_{rec}^{0} \approx \frac{(m_{\mu} - B_{\mu})^2}{2M_{\Lambda}}$$

と近似されるが、その値は非常に小さいので、結 局、ミューオン・電子転換過程で放出される電子 は、

$$E_{\mu e} \approx m_{\mu} - B_{\mu}$$

と単色エネルギーを持つ。B_µは原子核に依存し、 例えばチタン原子の場合は、

 $E_{\mu e} = 104.3 MeV$

である。従って、ミューオン・電子転換過程を見 つけるためには、ミューオンを物質中に静止さ せ、放出される粒子を識別し、そのエネルギーを 精度よく測定することで、E_μのエネルギーを持 っ電子が一つだけ放出される事象を観測すれば よい。

反応	崩壊比上限値 (90% C.L.)	場所	年
$\mu^- + Cu \rightarrow e^- + Cu$	1.6×10^{-8}	SREL	1972
$\mu^- + \overline{{}^{32}S} \rightarrow e^- + \overline{{}^{32}S}$	7×10^{-11}	SIN	1982
$\mu^- + Ti \rightarrow e^- + Ti$	1.6×10^{-11}	TRIUMF	1985
$\mu^- + Ti \rightarrow e^- + Ti$	4.6×10^{-12}	TRIUMF	1988
$\mu^- + Pb \rightarrow e^- + Pb$	4.9×10^{-10}	TRIUMF	1988
$\mu^- + Ti \rightarrow e^- + Ti$	4.3×10^{-12}	PSI	1993
$\mu^- + Pb \rightarrow e^- + Pb$	4.6×10^{-11}	PSI	1996
$\mu^- + Ti \rightarrow e^- + Ti$	6.1×10^{-13}	PSI	1998

表1:ミューオン・電子転換過程実験の歴史

 μ^{-} /年のミューオンを使用するには 10¹¹-10¹² μ^{-} /秒のミューオン強度が要求される。

(イ) パルスミューオンビーム

陽子ビーム起因のバックグラウンドを取り除 くために必要である。

(ウ) 高輝度ミューオンビーム

ミューオンのエネルギーが揃うことで、ミュー オン停止標的の厚さを薄くすることが可能と なる。転換過程で放出される電子が停止標的か ら抜けるまでの距離が短縮され、停止標的中で の電子のエネルギー損失のばらつきが低減す る。その結果、電子のエネルギー測定精度が向 上する。

(エ) 高純度ミューオンビーム

ミューオンビーム中への他の粒子の混入を防 ぐことは、バックグラウンドの低減の意味から 非常に重要である。特に、SINDRUM-II 実験に 見たように、 π 中間子の混入は致命的なバック グラウンド起源となりうるので、極力低減させ る必要がある。

現在、2つの新しいミューオン・電子転換過程 実験が提案されている。1つは、米国のブルック ヘブン国立研究所(BNL)で提案されている MECO 実験であり、上記の(ア)及び(イ)を実現する ことにより、 $B(\mu^{-}+Al\rightarrow e^{-}+Al)\sim 2x10^{-17}$ を目指す実 験計画である。

もう一つは、日本で進められている PRIME 実 験である。これは、(ア)(イ)に加えさらに、 (ウ)(エ)の特徴を合わせ持つ、大強度・高輝度 高純度ミューオン源 PRISM によるミューオンビ ームを用いて、B(μ^{-} +Ti \rightarrow e⁻+Ti) \sim 10⁻¹⁸の実験感度 を目標とする実験計画である。

3. 次世代大強度・高輝度・高純度ミュ ーオン源 PRISM と PRIME 実験

本章では、次世代のミューオン源 PRISM とその ミューオンビームを利用した次世代ミューオ ン・電子転換過程実験 PRIME の概要を紹介する。

2.3.2. ミューオン・電子転換過程実験の現状

表1に、様々な原子核中におけるミューオン・電 子転換過程実験の結果をまとめて示した。もっと も最近の3つのデータは、PSIで行われた SINDRUM-II実験の値である。チタン原子中にお ける崩壊比の上限値は、

 $B(\mu^{-} + (A,Z) \rightarrow e^{-} + (A,Z)) \le 6.1 \times 10^{-13}$

である。予想される電子のエネルギー領域には、 1事象も発見されなかったため、このような崩壊 比の上限値が定められた。また、金原子核による 実験データは現在解析が進められている。

2.3.3. 次世代ミューオン・電子転換過程実験にお ける必要事項

ミューオン・電子転換過程実験の到達感度をさら に数桁向上させるためには、ミューオンビームの 強度だけでなくその性質も向上させることが重 要な鍵となる。以下に、次世代ミューオン・電子 転換過程実験で要求されるミューオンビームへ の要求項目を挙げる。

(ア) 大強度ミューオンビーム

稀崩壊探索実験であるから、基本的にミューオンの数によりその到達感度が制限される。10²⁰

3.1. PRISM とは

PRISM は、1)大強度、2) ビームエネルギー幅 が小さい、3) ビーム中のミューオン以外の粒子 の混入量が少ないことを大きな特徴とする次世 代ミューオン源計画である。次章で詳しく述べる ように位相空間回転法により、ビームエネルギー を揃えることから、"Phase Rotated Intense Slow Muon source"の頭文字をとって、"PRISM"と名付 けられた。PRISM の目標とするミューオンビーム の性能を表2にまとめた。

値

Beam Intensity	10^{11} - $10^{12} \mu^{\pm}/\text{sec}$
Repetition	100-1000Hz
Energy	20MeV(=68MeV/c)
Energy Spread	±0.5-1.0MeV
π Contamination	< 10 ⁻¹⁸

目標とするミューオンビームの強度は、 10¹¹-10¹² μ [±]/秒であり、これは現在 PSI で利用可 能なミューオンビームの強度の約1万倍に相当 する。PRISMは、ミューオン停止実験、特に、ミ ューオン・電子転換過程実験用に最適化されてい るので、ミューオンのエネルギーは 20MeV に設 定されている。また、円形リング中で高周波電場 を用いて速い粒子を減速しつつ、かつ遅い粒子を 加速する位相空間回転により、ミューオンのエネ ルギーを揃える。これにより、最初のエネルギー 広がり 20 MeV±40%が、位相空間回転終了後には 20 MeV±4%にまで低減する。また、円形リング 中での周回により、ビーム中の混入粒子、特に π 中間子が崩壊するので、混入粒子のない高純度の ミューオンビームが生成される。

この PRISM によって供給される、大強度・高 輝度・高純度ミューオンビームを用いて、ミュー オン・電子転換過程を B(μ ⁻+Ti \rightarrow e⁻+Ti) \sim 10⁻¹⁸の実 験感度で測定しようとする実験計画を PRIME (PRIsm Muon to Electron conversion) 実験と言う。

3.2. PRISM の構成

図 6 は PRISM 検出器まで含めた PRISM 及び PRIME 全体の構成図である。

PRISM は大きく分けて次の4つの部分により構成されている。

図6: PRISM 及び PRIME 全体の構成図

3.2.1. 大強度陽子加速器

PRISM ではπ中間子により生成するミューオン を利用する。そのため、いかに多くのπ中間子を 生成し、位相空間回転部へ入射するかが一つの鍵 となる。陽子ビームをパイオン生成標的に当てる ことで生成されるπ中間子の生成量は、陽子ビー ムのパワー(=ビームエネルギーとビーム電流の 積)にほぼ比例する。PRISMの目標とするミュー オンビーム強度を達成するためには、1MW クラ スのビームパワーを持つ陽子加速器が必要であ る。

また、位相空間回転を行うには、位相空間回転 前のミューオンの時間幅が十分小さくなければ 成らないので、陽子ビームは速い取り出しによる パルス状の時間構造を持たなければならない。後 述のように、位相空間回転により達成されるビー ムのエネルギー幅は、位相空間前のビーム時間幅 に比例する。PRISM では、10ns 以下の時間幅を 持つパルス状陽子ビームが要求される。

3.2.2. パイオン生成・捕獲系

パイオン生成標的は、超伝導電磁石による高ソレ ノイド磁場下に配置され、生成したパイオンが効 率よく捕獲される。PRISMでは低エネルギーのミ ューオンを生成するため、必要となるパイオンの 運動量も 100MeV/c 以下と小さい。逆に、必要な い高エネルギーの粒子は、バックグラウンドの原 因となり得るので、混入することは望ましくな い。そこで、PRISMでは、後方に生成されたパイ オンだけを大立体角でソレノイド磁場により捕 獲する。低エネルギーのパイオンの生成量は、前 方と後方で大差はない。

ボア半径 R(m)、磁場 B(T)のソレノイド電磁石 により捕獲される荷電粒子の垂直方向運動量成 分の最大値 p_T^{max}(GeV/c)は、

 $p_T^{\max} = 0.3B\frac{R}{2}$

である。例えば、p_T^{max}=90MeV/c とした場合は、 ボア半径 10cm、磁場 6T のソレノイド電磁石が必 要となる。

捕獲されるパイオン数は、生成標的物質・長さ、 ソレノイド磁場強度・ボア半径などの設定に大き く依存する。これらを最適化するために、シミュ レーション計算による検討が進められている。

3.2.3. パイオン崩壊・ミューオン輸送系

捕獲されたパイオンはカーブド・ソレノイド・ チャネルにより、次の位相空間回転部まで輸送さ れる。チャネルの約全長 10m であり、輸送中にほ とんどパイオンが崩壊しミューオンが生成され る。

チャネル内のソレノイド磁場強度 B は、粒子の 進行とともに断熱的に減衰させる。このとき、

$p_T R \propto \frac{p_T^2}{B} = constant$

の関係が成り立つ。リウビルの定理により磁場内 での運動量の大きさは保存されるので、磁場 B が 減少すると、運動量の垂直成分 pr も減少し、軸成 分 pL が増大する。すなわち、断熱輸送により垂直 方向に広がったパイオンの運動量ベクトルが、軸 方向に平行にそろえられる。一方、ビーム径は増 大するので、磁場の減少とともに、

 $p_T R \propto B R^2 = constant$

の関係を満たすように、ソレノイドボア半径 R を 大きく取る必要がある。

ソレノイド・チャネルがカーブを描くことは、 陽子ビームライン上の生成標的から実験ホール ヘビームを引き出すために必要であるが、これに はもう一つの役割がある。カーブド・ソレノイド 中の荷電粒子の螺旋軌道は、その弧の法線方向に ドリフトすることが知られている。ドリフト距離 D(m)は、

$$D = \frac{1}{0.3B} \times \frac{s}{R} \times \frac{p_L^2 + 0.5 p_T^2}{p_L}$$

により与えられる。ここで B(T)はソレノイド軸上 の磁場強度、s(m)は軸に沿った移動距離、R(m)は カーブの半径、そして、pr、pLはそれぞれ運動量 の垂直成分と軸成分を表している。ドリフト方向 は荷電粒子の電荷の正負に依るので、ソレノイド 内に適当なコリメーターを設置することで、電荷 及び運動量の選択が可能となる。その場合、逆の 弧を描いたカーブド・ソレノイドを対で使用する か、目的の電荷・運動量の粒子のドリフトを打ち 消す外部偏向磁場をかける必要がある。

3.2.4. 位相空間回転部

最後に、ミューオンはキッカーにより位相空間回 転器に入射される。PRISMでは、FFAG(Fixed Field Alternating Gradient)リングを位相空間回転器とし て用いる。FFAG 周回中に高周波電場を適用し、 π/2だけシンクロトロン振動させることで、ミュ ーオンのエネルギー的広がりを時間的広がりに 変換、エネルギーの揃った高輝度ミューオンビー ムを実現する。この位相空間回転器については、 既に建設が開始されており、その内容を含め、次 章において詳しく説明する。

3.3. PRISM の開発状況

前述の PRISM 構成要素の内、位相空間回転器の 開発・建設が平成15年度より学術創成科研費に より5カ年計画で開始されている。 既に、FFAG ラティス設計、電磁石設計を完了 し、電磁石の製作が始まっている。また、超高電 場勾配高周波加速空洞システムの設計・製作に成 功している。

4. PRISM 位相空間回転器

4.1. 位相空間回転の原理

位相空間回転とは、高周波電場により、速い粒子 を減速し、遅い粒子を加速することで、ミューオ ンビームのエネルギー幅を小さくする方法であ る。これは、図7のようなエネルギーと時間(位 相)の2次元位相空間でみると、ビームの分布を 90度回転させることに対応する。ビームの時間 的な広がりとエネルギーの広がりが変換される ので、位相空間回転により達成される、エネルギ ー幅は、最初のビームの時間的な広がりによって 決定される。したがって、位相空間回転法による ビームの高輝度化には、パルス幅の狭い陽子ビー ムを使用することが重要となる。

PRISM では、運動量幅 68MeV/c±20%を持つミ ューオンビームが位相空間回転により、±2%の運 動量幅まで高輝度化できることが、シミュレーシ ョンにより示されている。

図7:位相空間回転の原理

4.2. 位相空間回転器の選択

PRISM の位相空間回転器が備えるべき特徴として、

- (1) 大強度を達成するに十分大きな横方向ア クセプタンスを持つこと、
- (2)エネルギーアクセプタンスも十分に大きいこと、

(3) ミューオンの寿命より十分短時間の内に 位相空間回転により高輝度化が達成されるこ と、

の3点が重要である。PRISMでは、位相空間回転 器として、円形加速器、しかも、近年その開発が 著しい FFAG リングを採用した。

リング加速器では、周回ターン毎に高周波系に より位相回転するので、線形システムに比べ高周 波系は簡略化されるというメリットがある。ま た、数 kHz の繰り返し運転でも、位相回転に必要 な時間は数マイクロ秒であるので、全体のデュー ティは数%と少ない。よって、高周波空洞の冷却、 高周波電源消費電力の点からも運転が容易とな る。

リング加速器としては、サイクロトロンやシン クロトロンなどもあるが、上記の3つの要求を同 時に満たすのは FFAG だけである。サイクロトロ ンのエネルギーアクセプタンスは大きいが、等時 性が成り立つので、シンクロトロン振動がない。 また、シンクロトロンについては、エネルギーが 変わっても閉軌道は一定であるので、分散できま る水平方向のエネルギーに対するアクセプタン スは dE/E=1%程度と非常に小さい。一方、FFAG は、

- ア) 強収束なので、横方向アクセプタンスも大 きい
- イ)軌道がエネルギーとともに変わるので、エ ネルギーアクセプタンスが大きく、

ウ)シンクロトロン振動することが可能で、 など、ミューオンの位相空間回転器として非常に 適した特徴を兼ね備えている。

4.3. PRISM-FFAG ビーム光学設計

我々は、Radial Sector 型の Scaling FFAG を位相空 間回転器として用いることにした。大強度ミュー オンを達成するために、非常に口径の大きな FFAG を設計した。ここでは、PRISM-FFAG のビ ーム光学設計がどのように行われたかについて 簡単に紹介する。

4.3.1. 設計の指針

ビーム光学の設計に当たって、以下のような指針 を立てた。

- 1)横方向アクセプタンスが大きいこと。目標 は水平・垂直アクセプタンスそれぞれ、 20000 π mm・mrad、3000 π mm・mrad とし た。
- 2) 運動量アクセプタンスが 68MeV/c±20%で あること、
- トランジションエネルギーが上記のエネ ルギーから十分に離れていること、
- できるだけ多くの高周波加速空洞を配置 できるように、長いストレートセクション を持つこと、
- 空洞コアへの漏れ磁場が十分小さい (<200gauss)こと、
- 6) リングの直径は10m程度とする。

これらの要求を満たすためには、大口径でかつ開 き角の小さい(円周方向に薄い)電磁石が必要で ある。また、doubletやtriplet電磁石を使用するこ とが、長いストレートセクションを確保する上で 有利である。 このような大口径で薄型の電磁石を使用する場 合、磁場の非線形成分や周辺磁場がビームダイナ ミックスに大きく影響する。したがって、磁場の 高次成分や周辺磁場を正しくモデル化すること が、より正確にビームダイナミックスを評価する 上で重要となる。従来のFFAG 設計では、SAD な どによる線形モデルで基本パラメータを設計し た後、TOSCA 3 次元磁場を用いた単粒子トラッキ ングを行っていた。我々は、より厳密に高次成分 を扱いつつパラメータサーチを行うために、従来 とは異なる方法を取った。

初期の段階から、現実的な磁場マップによる単 粒子トラッキングを行い、FFAGのダイナミック スを評価、パラメータの決定を行った。一つの電 磁石を円周方向に平行な面でスライスしたモデ ルによる2次元磁場をいくつかの平面について POISSONにより計算し、それらについて2次元ス プライン補完することで、電磁石の3次元磁場マ ップを作成した。この方法では、TOSCAのよう に周辺磁場まで現実的な磁場が得られる上に、磁 場作成に要する計算時間はわずかに数分である (TOSCAの場合、数時間を要する)。したがって、 短時間に多くのパラメータについて、現実に近い 精度でビームダイナミックスを評価することが

図8:k値及びF/D比を変えた場合のアクセプタンスとチューンの変化。右図が8セルの場合、 左図が10セルの場合。アクセプタンスは楕円の面積に比例する。縦に並ぶデータは右から k=4.0,4.6,5.0の場合である。

4.3.2. 現実的な磁場マップの作成

できる。

4.3.3. 単粒子トラッキング

トラッキングコードには素粒子原子核実験分野 で一般的に使われているシミュレーションコー ド GEANT3.21 を用いた。

4.3.4. アクセプタンス・スタディ

このような方法により、FFAG の以下のパラメー タについて、スタディーした。

- セル数
- 電磁石のタイプ (DFD,FDF,FD)
- k値
- F/D 比
- 電磁石のギャップサイズ

図8にk値及びF/D比を変えた場合のアクセプタンスとチューンの変化についての結果を示した。

4.3.5. PRISM-FFAG のパラメータ

表3に決定された PRISM-FFAG のパラメータを まとめた。また、図9にその外観の模式図を示し た。リングは10個のDFD triplet 電磁石から成り、 その外径は約15m、平均軌道半径は6.4m である。 1セルのストレートセクションの長さは約1.7m であり、その8カ所に高周波加速空洞が配置され、 残りの2カ所には入射取り出し用のキッカー電磁

図9: PRISM-FFAGの模式図

石が配置される。

表3: PRISM-FFAG のパラメータ

Number of sectors	10
Magnet type	Radial sector, DFD
Field index (k)	4.6
F/D ratio	6.2
Opening angle of magnet	F/2-2.2deg., D-1.1deg.
Half gap of magnet	17cm
Average orbit radial	6.4m
Maximum field	F:0.4T, D:0.065T
Tune	H:2.73, V:1.58

4.4. PRISM-FFAG 電磁石

設定された光学パラメータを元に、電磁石の設計 が行われた。図10に示すような大口径のFFAG 電磁石が設計された。その口径は中心で水平 100cm x 垂直 30cm である。電磁石はDFDの triplet 構成で、電磁石の外側からの入射取り出しができ るようにC型電磁石を採用している。また、高周 波空洞コアへの漏れ磁場を抑える目的で、両端に はフィールドクランプを有する。FFAG に特有の 磁場勾配はポール形状によって形成されるが、ポ ール面に配置されたトリムコイルにより、k値を 調節可能な設計となっている。

図12:チューンのエネルギー依存

図11:PRISM-FFAG のアクセプタンス

TOSCA により計算された3次元磁場によるトラ ッキングの結果を図11及び図12に示す。図1 1は4次元アクセプタンスを水平位相空間及び 垂直位相空間に射影したものであり、その面積は それぞれ、40000πmm・mrad、6500πmm・mrad と目標としたアクセプタンスは十分に達成され ている。図12は、各エネルギーについてチュー ンをダイアグラム上にプロットしたものである。 チューンのエネルギー依存がなく、scaling-FFAG の特徴であるゼロクロマティシティーが成立し ていることが分かる。

4.5. 高周波加速システム

大口径 FFAG と並んで、PRISM 位相空間回転器成 功の鍵となるのが、超高電場勾配を要する高周波 システムである。本節では、PRISM 高周波加速シ ステムへの要求と仕様、そして、性能試験結果に ついて述べる。

4.5.1. 要求される高周波電場勾配

位相空間回転による高輝度化とは、時間とエネル ギーの位相平面内で、エネルギー的に広がったバ ンチを $\pi/2$ だけ回転させ、エネルギーを揃える ことである。この位相を $\pi/2$ 回転するのに要す る時間は、ミューオンの寿命(静止寿命 $\tau=2.2 \mu s$) に対して十分短い必要がある。そこで、まず、シ ンクロトロン振動の基本的な式から、PRISMで要 求される高周波電圧、電場勾配を求めてみる。

シンクロトロン振動数 Ωs は、

$$\Omega_{s} = \omega_{0} \sqrt{-\frac{heV\eta\cos\phi_{s}}{2\pi E_{s}}}$$
(4-1)

である。ここで、変数の意味は以下の通りである。 β、:光速に対する同期粒子速度、

Es:同期粒子の全エネルギー、

- φs:同期位相、
- ω_s:同期粒子の角周波数、
- ω₀:光速の粒子に対する角周波数、

- e:粒子の電荷、
- V:高周波電圧、

η : slippage factor_o

位相空間回転では同期粒子に関しては加速も減 速も行わないので同期位相 ϕ_s は0である。位相空 間回転によりビームのエネルギーを揃えるには $\pi/2$ 回転のシンクロトロン振動を行うので、位 相空間回転に要する時間 $T_{\rm or}$ は、

$$T_{pr} = \frac{\pi}{2\Omega} \tag{4-2}$$

である。また、ミューオンが生存率Sとなる時間 T_{life} は、

$$T_{life} = -\gamma \tau \ln S \tag{4-3}$$

である。ここで、τはミューオンの静止寿命、γ はミューオンのエネルギーに対するローレンツ 係数である。従って、ミューオンの生存率S以上 を達成するためには、

$$\frac{\pi}{2\Omega} < -\gamma \tau \ln S \tag{4-4}$$

が成立しなければならない。(4-1),(4-4)式より、 必要な高周波電圧が求まる。

いま、平均軌道半径 6.5m、k 値 4.6 のリングに おいて、中心運動量 68MeV/c のミューオンを位相 空間回転させる場合を考え、ミューオンの生存率 Sが 70%以上となるのに必要な高周波電圧及び 電場勾配を求める。ハーモニック数は1とすると、 必要な高周波電圧はリング1周あたり 2.0MV 以 上となる。また、1ストレートセクションあたり 約 1.7m を高周波加速空洞に使用できるとし、8 セル分に加速空洞を設置すると想定すると、必要 な電場勾配は~150kV/m となる。7 セルに置く場 合は、~170kV/m である。

従って、PRISM-FFAGでは、周波数 4-5MHz に おいて電場勾配 170kV/m を達成する高周波加速 空洞が要求される。この電場勾配は通常の陽子シ ンクロトロンに比べて1桁程度大きい(図13)。 これまで陽子シンクロトロンに使われてきた高 周波加速空洞ではコア材質としてフェライトを 使っており、得られる電場勾配がせいぜい 10-20kV/m と小さい。したがって、フェライトコ アではこのような高電場勾配の高周波空洞を作 ることは不可能である。

図13:従来のシンクロトロンと PRISM の電場勾配

4.5.2. PRISM 高周波加速システムの特徴

このような高電場勾配を実現するために、我々は コア素材として Magnetic Alloy を用いた極薄の加 速ギャップと 30kV 以上で動作する四極真空管を 用いた高出力アンプを組み合わせた高周波加速 システムを開発した。

4.5.3. Magnetic Alloy $\exists \mathcal{T}$

Magnetic Alloy (軟磁性合金: MA) コアは近年、 FFAG や J-PARC-PS など KEK を中心に使用され ている。MA は μ Qf 積が高く、しかも、図14に 示すように、2kGauss 程度までの高周波磁場環境 下でもその特性に変化がない。PRISM でも高い高 周波電圧によりおよそ 250Gauss 高周波磁場が発 生する。MA コアでは、このような条件において

図14: Ferrite と Magnetic Alloy の高周波 特性の高周波磁場依存

も高電場勾配の空洞の製作が可能である。また、

シリコンで絶縁コートされた薄いテープ(厚さ18 µm、幅35mm)を巻いてコアを作るので、より 大きなコアの製作が可能である。さらに、素材自 体のQ値は0.6程度と小さいため、1倍波に加え て、2倍などの高調波いれた高周波波形の形成が 可能である。共振周波数及びQ値は、カットコア の技術により調整が可能である。

PRISM の MA コア形状を図15に示す。コアは レーストラック形状をしており、その外形は、 1.7m x 1.0m x 35mm である。コア1枚あたりのシ ャントインピーダンスは、5MHz において 159Ω であった。6枚の MA コアにより1つの空洞が構 成される。その全長は空洞(1ギャップ)あたり 33cm である。PRISM 空洞のパラメータを表4に まとめた。

図15: PRISMの MA コア形状

表4: PRISM 高周波空洞のパラメータ

Number of cavities	16 (or14) / ring
Number of gap	5 / cavity
Length of cavity	1.65 m
Core material	Magnetic Alloy (FM-3M)
Core size	1.7m x 1.0m x 35mm
Core shape	Racetrack
Number of cores	6 / gap
RF frequency	4-5 MHz
Expected field gradient	~ 200 kV/m
Flux density	~ 300 Gauss
Duty	< 0.1% (15 µ s x 100/3.4s)
Cooling	Air cooling

4.5.4. 高出力アンプ

それぞれの空洞は、四極真空管(4CW100,000E)を 用いたプッシュ・プル・アンプに繋がれる。デュ ーティーが低いので最大 1.5MW のパワーが生成 可能である。また、本システムでは、真空管の最 大プレート電圧 40kV、最大RF電流として 60A を生成することが可能である。したがって、イン ピーダンス 1kΩの空洞をドライブすることで、 60kV のギャップ間電圧を生成することができる 設計である。

このアンプシステムを、インピーダンス 735 Q (5MHz)の試験空洞に繋ぎ、高出力試験を行った結 果、43kV のギャップ間電圧が達成された。この結 果から、PRISM 空洞(159x6=954 Q @5MHz)を用い た場合を推測すると、ギャップ電圧として 56kV、 電場勾配に換算して約 170kV/m が達成される見 込みである。 4.5.5. RF 波形と位相空間回転後のエネルギー幅 アンプ試験の結果から予想される PRISM の電場 勾配を用いて、位相空間回転のシミュレーション

を行った結果を示す。

図16右は sin 波形の高周波を適用した場合の 結果である。図中の数字はリング内での粒子の周 回数を意味する。初期状態のビームの時間分布は ソレノイド輸送のモンテカルロシミュレーショ ンの結果に基づいている。ビーム入射時では位相 空間上でほぼ垂直にあるものが、リングを回転す るにつれて位相回転している。しかし、中心から 離れた粒子ほど位相回転速度、すなわち、シンク ロトロン振動の速度が遅くなり、中心部で 90 度 回転した場合でも端の方の粒子はまだ 90 度回っ ていないことがわかる。また、高エネルギー側の 粒子に比べて、低エネルギー側の粒子の方が位相 空間回転の速度が速いことも見て取れる。シンク ロトロン振動数はスリッページ係数に依存する。 このスリッページ係数はビームのエネルギーに 対して1/y²の依存性を持つので、エネルギー の低い粒子ほど位相回転の回転速度は速くなる のである。

これら位相空間回転における非線形性の問題 を解決するには、縦方向ポテンシャルを線形化す ればよい。すなわち、線形なバケツを作るために、 sin 波の代わりに鋸歯状の高周波波形を用いる。さ らに、スリッページ係数のエネルギー依存を補正 するために、減速側の電場勾配を強くするのであ る。図16左は、鋸歯状の高周波波形を用いた場 合の、シミュレーション結果である。この場合、 振動速度のエネルギー依存がほぼ解消され、リン グ6周後の位相空間回転終了時には、運動量幅が 68MeV/c±2%と初期状態の10分の1まで低減で きる。

しかし、実際は、このような理想的な鋸歯波形 の高周波電圧を発生させることはできない。した がって、鋸歯波形をn次までのフーリエ級数に展 開し、その合成波を各ギャップにかけるか、高調 波毎に異なる空洞を用いるなどの方法の検討を 進めている。図17に鋸歯波形を4次までのフー リエ級数に展開した場合の結果を示した。

以上、PRISM 計画について、駆け足で紹介しましたが、PRISM 計画及び PRIME 実験について、より詳しく知りたい方は、以下の文献を参考にしてください。

参考文献

- Y. Mori, K. Yoshimura, N.Sasao, Y. Kuno, et al., "The PRISM Project - A Muon Source of the World-Highest Brightness by Phase Rotation", LOI for Nuclear and Particle Physics Experiments at the J-PARC (2003).
- [2] Y. Mori, K. Yoshimura, N.Sasao, Y. Kuno, et al., "An Experimental Search for the m-e Conversion Process Towards an Ultimate Sensitivity of the Order of 10- 18", LOI for Nuclear and Particle Physics Experiments at the J-PARC (2003).

図17: 鋸歯状波形の4次までのフーリエ 展開の結果