SC回収リニアック

2008年9月4日 OHO '08 KEK-PF 梅森 健成

目次

- ・ERL放射光源の概要、ERLにおける加速空洞
- 高次モードとビーム不安定性
- ・ 空洞デザインその1 ~大口径ビームパイプの効果~
- ・ 空洞デザインその2 ~空洞セル形状の最適化~
- 偏心フルート型ビームパイプ
- ・ 単セル空洞の縦測定と9セル空洞の進捗状況
- 周辺コンポーネント

ERL 放射 光源の 概要 ERL における 加速 空洞

<u>ERL放射光源の概要</u>

<u>5 GeV ERL放射光源の概要</u>

加速器の主要なパラメータ

	パラメータ
ビームエネルギー	5 GeV
平均ビーム電流	10 - 100 mA
規格化エミッタンス	0.1 - 1 mm mrad
エネルギー幅 (rms)	(0.5 - 2) ×10 ⁻⁴
バンチ長 (rms)	1-3ps(通常モード) ~100fs (バンチ圧縮時)
加速周波数	1.3 GHz

光源の代表的なパラメータ

	パラメータ
スペクトル範囲	30 eV - 30 keV
挿入光源からの平均輝度	10 ²¹ - 10 ²³ ph/s/mm²/mrad²/0.1%bw
平均フラックス	> 10 ¹⁶ phs/s/0.1%bw
挿入光源台数	20 - 30 台

<u>ERLにおける特徴</u>

- 1-passで高いエネルギーまで加速
 → 加速勾配の大きな加速空洞が必要
- ・放射光実験を行うため、CW大電流が必要
 → 高次モード、冷凍機負荷が問題
- ・ 通常の加速方式では膨大な電力が必要
 → エネルギー回収による電力の節約
- 短バンチでの運転
 - → 高い周波数まで高次モードが発生

<u>ERLにおける加速空洞</u>

- 壁損失の少ない超伝導加速空洞を用いる
- 2Kまで冷却して運転
- ・ 周波数は700~1500MHzあたり

 KEKの計画では、1300MHzを採用
- 要求される加速勾配は15~20MV/m
 - 冷凍機や建設・運転コストとのバランス
- 大電流ERLにおける最大の問題点は高次モード (HOM)の減衰
 - -ビーム不安定性の原因となるHOMを抑制
 - 低温部に設置されるHOMダンパーでの熱負荷 を抑えるためにも、HOM対策は必要

- ・電圧Vの立った高周波加速空洞内をビーム(電荷 q)が通過する場合
 - 高周波の位相に応じて、電荷はVcosθだけ加速される(cosθ>0)
 - この時、qVcosθのエネルギーが空洞からビームへ渡さ せる

- ・ 電圧Vの立った高周波加速空洞内をビーム(電荷 q)が通過する場合
 - 高周波の位相に応じて、電荷は|Vcosθ|だけ減速される (cosθ<0)
 - この時ビームは、|qVcosθ|のエネルギーを失う
 - この|qVcosθ|のエネルギーは空洞に蓄えられる(空洞 とビームの系ではエネルギー保存)

- 加速ビーム(θ=0)の半周期後(θ=π)にビームが来ると
 どうなるか?
 - 加速ビーム:V加速される。qVのエネルギーを空洞からもらう
 - 減速ビーム:V減速される。qVのエネルギーを空洞に渡す
 - 空洞: -qV+qV=0でエネルギーの収支はゼロ
- ・減速ビームのエネルギーを次のビームの加速に用いる。これを繰り返す。→ これがエネルギー回収

加速空洞に必要なRFパワー

- ・ビーム加速
 - エネルギー回収なしだと、5GeV × 100mA=500MWという膨 大な電力が必要
 - 1-passのCW大電流加速器では、エネルギー回収が必須。
 ERLでは、この500MW分を節約。
 - 位相補償分の電力、数MWは必要
- 空洞の壁損失
 - 常伝導の空洞だと熱負荷が大きくなりすぎる。数GWのRFパ ワーが必要
 - 超伝導空洞が必須。2Kで10kW程度の壁損失。ただし、大 規模な冷凍機システムが必要。

<u>超伝導空洞の表面抵抗</u>

• Cu(常伝導)の表面抵抗 9m $\Omega(@常温)$ • Nbの表面抵抗 ~500n $\Omega(@4.2K, 1.3GHz)$ Rs = $R_{BCS} + R_{res}$ $R_{BCS} = 2 \times 10^{-4} \frac{1}{T} \left(\frac{f}{1.5}\right)^2 \exp\left(-\frac{17.67}{T}\right)$ f [GHz], T[K]

<u>2Kでの運転</u> <u>が必須</u>

<u> RFパラメーター</u>

加速モードのQ値

$$Q_{0} = \omega \frac{U_{0}}{P_{0}} = \frac{\omega \mu}{Rs} \frac{\int_{\nu} H^{2} d\nu}{\int_{s} H^{2} ds}$$

$$U_{0} = \frac{\mu}{2} \int_{\nu} H^{2} d\nu = \frac{\varepsilon}{2} \int_{\nu} E^{2} d\nu$$

$$P_{0} = \frac{Rs}{2} \int_{s} H^{2} ds$$
m速モードのシャント・インピーダンス
$$\frac{R_{sh}}{Q} = \frac{\left|\int Ez(r=0,z)e^{ikz} dz\right|^{2}}{\omega U_{0}} [\Omega]$$
m速電圧
$$Eacc = \frac{1}{L_{cavity}} \left|\int Ez(r=0,z)e^{ikz} dz\right| [V/m]$$

<u>加速勾配と空洞台数</u>

- 加速勾配と空洞台数は反比例
 空洞台数=5x10⁹ / (V[V/m])
- ・全体での冷凍機負荷は加速勾配に比例
 - 空洞1台あたりの負荷: P=V²/((R/Q)*Q)
 - 全体での負荷: P= 5x10⁹ xV / ((R/Q)*Q)
- ビーム不安定性
 - 空洞台数が増えるとビーム不安定性が起きやす くなる

Field emission

- Field emissionとは、"emitter"からの電子放出。電場の強い ところ(アイリス部)で起きやすい。
- Field emissionが生じるとQ値の劣化を引き起こし、冷凍機 負荷を増す。
- 放出電子が軸上電場で加速したのちロスすると、放射線源となる可能性があるので、注意が必要
- CW運転を行うERLでは、Field emission freeの空洞である ことが望ましい

RF Superconductivity for Accelerators, H. Padamsee

> Figure 12.2: Calculated electron trajectories in a 5-cell 1.5 GHz cavity operating at $E_{\rm acc} = 20$ MV/m. The emitter is located in the end cell, where the

<u>ERL / ILC の加速空洞の比較</u>

	ERL	ILC
周波数	1.3 GHz	1.3 GHz
ビームエネルギー	5 GeV	250 GeV
加速勾配	15 ~ 20 MV/m	31.5 MV/m
空洞台数	333~250 台	~8000 台
運転モード	CW	パルス
Duty cycle	100 %	0.5 %
平均電流	100 mA+100mA	45 uA
バンチ電荷	77 pC	3 nC
バンチ長	2~3 ps	1 ps
Qo	1x10 ¹⁰	1x10 ¹⁰
Q _L	2x10 ⁷	3x10 ⁶
空洞1台あたりの壁損失	22.5~40 W	0.5W (100 W)
トータルの壁損失	7.5 ~ 10 kW	4 kW

高次モードとビーム不安定性

<u>高次モード</u>

- ・電子ビームが空洞を通過する際には、空洞
 内に高次モード(HOM)を励振する
- この高次モードはしばしば運転に悪影響を与える
 - -ビーム不安定性
 - 熱負荷
- ERLでは、いかにこの高次モードを抑えるか が勝負!

高次モードのRFパラメーター

高次モードの0値 $Q_{HOM} = \omega \frac{U_{HOM}}{P_{HOM}} = \frac{\omega \mu}{Rs} \frac{\int_{v} H^{2} dv}{\int H^{2} ds}$ モノポールモードのシャント・インピーダンス $\frac{R}{\Omega} = \frac{\left|\int Ez(r=0,z)e^{ikz} dz\right|^2}{\omega U} \quad [\Omega]$ ダイポールモードのシャント・インピーダンス $\frac{Rt}{\Omega} = \frac{\left|\int Ez(r=r_0,z)e^{ikz}dz\right|^2}{\omega U(r_0)^2} \left[\Omega/cm^2\right]$ Quadrupoleモードのシャント・インピーダンス $\frac{Rq}{\Omega} = \frac{\left|\int Ez(r=r_0,z)e^{ikz}dz\right|^2}{\omega U(r)^4} \left[\Omega/cm^4\right]$

<u>Beam Breakup(BBU)不安定性(2)</u>

※ 最も簡単な場合: 空洞1台、高次モードも1つのみ

The threshold corresponds to equilibrium between deposited and dissipated power.

At the equilibrium, the stored HOM energy does not change (dU/dt=0)

The formula yields two regions: $m_{12}sin(\omega T_r) < 0 - unstable$ $m_{12}sin(\omega T_r) > 0 - "pseudo"$ -stable

(Thorough analysis by J. Bisognano, G. Krafft, S. Laubach,1987 Hoffstaetter, Bazarov, 2004)

$$\dot{U}_{cav} = \dot{U}_{beam} - P_c = \left\langle \Delta U_{in} + \Delta U_{out} \right\rangle \cdot f_b - P_c$$
$$P_c = \frac{V_a^2}{(\omega/c)^2 a^2 \left(\frac{R}{Q}\right) Q_L}$$

$$\frac{dU}{dt} = -\frac{V_a^2}{a^2} \left(I_b \frac{m_{12}}{V_b} \frac{c}{\omega} \frac{\sin(\omega T_r)}{2} + \frac{1}{(\omega/c)^2 \left(\frac{R}{Q}\right) Q_L} \right)$$

$$I_{th} = -\frac{2V_b}{(\omega/c)\left(\frac{R}{Q}\right)Q_L m_{12}\sin(\omega T_r)}$$

ERL2005 E. Pozdeyev et. al.

Beam Breakup(BBU)不安定性(3)

- 電流閾値の式から、m₁₂sin(ωTr)をコントロールすればBBUを回避可能であることがわかる
- ただし、これは1空洞の場合で、5GeV ERLの場合に、全ての空洞に対して、この条件を満たしてやることは困難
- 結論としては、空洞の高次モードのインピーダンス
 を下げておくことが大切

<u>HOMへの要求 ~BBU~</u>

• Dipole mode

- BBU (Beam breakup)不安定により制限
- Cornellのシミュレーションでの、100mAを実現するためのHOMのQ値

$$\left(\frac{R}{Q}\right)\frac{Q}{f} < 2.8 \times 10^5 \left[\frac{\Omega}{cm^2 GHz}\right]$$

[I.V.Bazarov et al., EPAC04 p2197,

M.Liepe, Proc. of the 11th workshop on Superconductivity (SRF2003)]

(注) R/Qの定義の仕方により、上記論文中の数値とは2倍異なる

Figure 2: Threshold current for 14 worst HOMs for identical (red circles) and randomly (blue squares) distributed around nominal HOM frequencies (10 MHz interval).

<u>HOMへの要求 ~quadrupole BBU~</u>

- Quadrupole mode
- 計算結果によると、ERLでは、quadrupole modeによるビーム 不安定性(Quadrupole BBU)によっても、電流値が制限される 可能性があると指摘されている。
- Cornellのシミュレーションでの、100mAを実現するためのHOMのQ値 [M.Liepe, Proc. of the 11th workshop on Superconductivity (SRF2003)

(注) R/Qの定義が異なるため、上記論文中の数値と2倍異なる

$$\left(\frac{R}{Q}\right)\frac{Q}{f} < 8 \times 10^{6} \left[\frac{\Omega}{cm^{4}GHz}\right]$$

BBUを起こさないよう、十分quadrupoleのHOMも減衰させた設計とする

<u>HOMへの要求 ~熱負荷~</u>

- Monopole mode
 - HOM damperでの熱負荷により制限
 - 100mA運転時にビームの持つ周波数成分がHOM周波数に直撃した
 場合(最悪の場合)に、100W以下となるためは

$$\left(\frac{R}{Q}\right)Q < 2500\left[\Omega\right]$$

- ただし、運転周波数を選ぶことにより、HOM周波数の直撃を避けることは可能 → 運転条件に依存する

 ERL 1.3GHz運転で問題となる2.6GHzの整数倍の周波数に、 インピーダンスの高いHOMが存在しない設計とする

<u>Power loss と frequency, QLの関係</u>

R/Q = 200, I=200mA, σz=100fs, Tb=1/1.3GHz = 770ps

QLが大きくなると共鳴場所ではpeakが大きくなり非常に 危険であるが、共鳴幅は小さくなる。

- ・ TESLA空洞+TESLA HOM couplerの場合の(Rt/Q)*(Qext/f)
 - Dipole mode (Cornell threshold : 1.4*10⁵)

	Freq	Rt/Q	Qext	(Rt/Q)	(Rt/Q)
	[GHz]	[Ω/cm ²]		* Qext	* Qext/f
ΤΜ110 6π/9	1.865	6.5	50600	3.3*10 ⁵	1.8*10 ⁵
ΤΜ110 5π/9	1.875	8.8	51100	4.5*10 ⁵	2.3*10 ⁵
TE-iris	2.575	23.8	50000	1.2*10 ⁶	4.6*10 ⁵

- Monopole mode (100W 相当: 2.5*10³)

	Freq	Rsh/Q	Qext	(Rsh/Q)
	[GHz]	[Ω]		* Qext
ΤΜ011 π/9	2.454	159	58600	9.3*10 ⁶
TM012 8π/9?	3.845	44	240000	1.1*10 ⁷

※ monopole modeはほとんど2500以上

100mA ERL用としては、十分なHOM減衰が得られていない

<u>TESLA型HOM couplerの問題点</u>

- ERLでの100mA運転を行うには、BBUを抑えるためにより強 力なHOM減衰が要求される
- CW(またはhigh duty)では、HOM couplerのpickup probe部 分での発熱が報告されており、ERL用には向かない

[P.Kneisel et. al. PAC2005, p4012]

Figure 2.1.20: Cross-section of the higher order mode (HOM) coupler.

⇒ ERL仕様のHOM damper および空洞設計が必要

空洞デザイン その1 ~大口径ビームパイプの効果~

KEK-ERL model-1空洞

<u>円形導波管内での電磁波の伝搬</u>

図 2.47 円形導波管のいくつかの TE モードの電磁界分布: 1. 断面図、2. 進行方 向断面図、3. 表面図

図 2.48 円形導波管のいくつかの TM モードの電磁界分布: 1. 断面図、2. 進行方 向断面図、3. 表面図

導波管の半径を a、光速を c とする また、 $J_m(\rho)=0の解をq_{mn}, J'_m(\rho)=0の解をq'_mnとする$

TEmnモード	
$f_{C} = \frac{C q'_{mn}}{m}$	
$2\pi a$	

q' mn	m=0	m=1	m=2	m=3
n=1	3.832	1.841	3.054	4.201
n=2	7.016	5.331	6.706	8.015
n=3	10.173	8.536	9.969	11.346

TMmnモード

$$fc = \frac{c \ q_{mn}}{2\pi a}$$

q _{mn}	m=0	m=1	m=2	m=3
n=1	2.405	3.832	5.136	6.380
n=2	5.520	7.016	8.417	9.761
n=3	8.654	10.173	11.620	13.015

遮断周波数以下だと、次式に示されるように減衰

$$\alpha = \frac{2\pi}{c} \sqrt{fc^2 - f^2} \times 8.686 \quad [dB/m]$$

	Radius	TE11	TM01	TE21
TESLA	39 mm	2.25 GHz	2.94 GHz	3.74 GHz
Model-1	54 mm	1.63 GHz	2.13 GHz	2.70 GHz

設計方針

- 片側のビームパイプを108φとして遮断周波数を下げ、 HOMを伝播させる。HOMは吸収体で減衰させる。

» 遮断周波数: TE11=1.63GHz, TM01=2.13GHz

- センターセルはTESLA形状と同じ
- エンドセルは非対称とする。図の左エンドはTESLAの endcup2,右エンドはendcup1をベースにして、加速モー ドのfieldがflatになるように形状を変更したもの

» インピーダンスの高いTM011を右エンドセルに寄せる

速モードのパラメー ワ カ

基本的にはTESLA空洞とほぼ同じ

Frequency	1301 MHz
Transit Time Factor	0.728
Rsh/Q	1007 Ω
Ep/Eacc	2.0
Hp/Eacc	4.2

<u>HOMのQ値の評価方法</u>

- Qextを評価
 - Superfishを用いて評価(理想的な吸収体でのロス計算)
 - MAFIAを用いて評価(2つの境界条件によるロスレス計算)
 - TM011, TM020でSuperfish/MAFIAを比較
 - »最大factor2程度の違い。MAFIAがややover estimateの傾向。
 - »全体的な傾向は良く一致している
- QLとQextの比較
 - 常温でのSiCおよびフェライト(KEKB使用)の誘電率、透磁率を吸収 体の特性として与えて、Superfishで計算
 - TM011のモードでQextの値に近いQLが得られることを確認
 - 吸収体の低温試験は今後必要
- 以下の発表ではMAFIAを用いて求めたQextをHOMのQ値 として示す

<u>SuperfishによるQextの評価</u>

理想的な吸収体の場合のQ値を求めてQextとする

以下はTM011 π/9モードの例

吸収体の誘電率をε'=1とし、ε"を大きくしながらQ値の変化を観測する

<u>MAFIAによるQextの評価</u>

ビームパイプの境界条件としてE-boundary, M-boundaryのそれぞれでQ 値を計算し、その値を足し合わせて求める \Rightarrow Qext = Q₁+Q₂ (もしくは近似的にQ₁, Q₂のうち最大のものをQextとする)

Ref) P. Balleyguier, "External Q Studies for APT SC-Cavity Coupler", Linac2000

<u>TESLA型HOMカップラーとの比較</u>

- 典型的な例としてTM011, TM110について示す
- TESLAと比較して、数倍~10倍のHOM減衰が得られている。 ⇒ Large beampipeは効果的である!!
- TM011, TM110以外のHOMにも効果的

<u>TESLA空洞 / KEK model 1のHOM比較</u> (TESLA loop coupler / Large beampipeの比較)

Large beampipeを用いることにより、TESLA model(TESLA 空洞+TESLAループHOM coupler)より1桁近くHOMを減衰 させることができる ⇒Large beampipeは効果的

<u>さらなるHOM対策の検討... Model 2空洞へ</u>

Model 1空洞でも計算上は100mA可能であるが、ERL用の 空洞としてはさらにHOMに対してはマージンを持たせたい

- 空洞形状を変える ⇒ Model 2空洞
 アイリス径、空洞半径、エンドセル…
- セル数を少なくする ⇒ 今回は採用しない
 インピーダンスを半分程度にする効果はある

	9セル		7セル				
		Rsh/Q	Q	Rsh	Rsh/Q	Q	Rsh
TM011	π/9	159	1730	2.8 × 10 ⁵	156	868	1.3 × 10 ⁵
TM012	8π/9	46	118000	5.4 × 10 ⁶	33	44500	1.5×10 ⁶
	-	Rt/Q	Q	Rt	Rt/Q	Q	Rt
TM110	5π/9	9	10700	9.4×10^{4}	7	8000	5.8×10^{4}
TE-iris		23	4256	9.6×10^4	17	2100	3.6×10^4

空洞デザイン その2 ~空洞セル形状の最適化~

KEK-ERL model-2空洞

<u>空洞の設計方針</u>

- BBUを引き起こすダイポールHOMのインピ ーダンスが小さくなるようにする
- 2.6GHzの整数倍付近にモノポールHOMが 存在しないようにする
- 加速モードのインピーダンスをできるだけ落と さないようにする

空洞デザインのスタディー

- アイリス直径
 - アイリス直径が大きい方が dipole modeのHOM減衰に は効果的である

▶アイリス径80~90mmあたりが良さそう

 その代わり、アイリス径を大きくすると加速モードの Rsh/Qは下がってしまう

▶アイリス径70,80,90,100mmの場合に、Rsh/Q はそれぞれ 1000,900,800,700Ω。

- Monopole modeは比較的インピーダンスの高いモードが 現れる傾向がある
- 空洞直径
 - 空洞直径はTM020のパスバンドが2.6GHzの周波数にか からないような設計にした。

	TM010	TE-iris			TM110	TM110		
	Rsh/Q	Rt/Q	Qext	Rt/Q*Q/f	Rt/Q	Qext	Rt/Q*Q/f	
70phi	1010	22	9500	80000	9	10000	49000	
80phi	890	11	4000	18000	6	7600	24000	
90phi	780	5	4600	13000	4	7000	13000	
100phi	690	3	1000	1000	4	9700	24000	

- このスタディー時の条件
 - セルの赤道部の形状はTESLA空洞の形状を用いた
 - ビームパイプはφ118mmとした
 - 左右対称形状を用いた
- 上記モードに限らず、dipole mode全般をかなり効率的に減 衰できている様子

<u>モノポールモードの具体例2.645GHz (TM020 π/9)</u>

<u>KEK-ERL Model-2空洞のデザイン</u>

設計方針 DipoleのHOMのインピーダンスが小さくなるよう設計 2.6GHzの整数倍付近にHOMがない設計

2) 空洞セル形状をERL用に設計

 >アイリス直径 80mm,赤道部には楕円形状を採用

 2) 大口径ビームパイプ+RF吸収体で高次モードを減衰

 >ビームパイプ直径 120mm & 100mm
 3) 偏心フルート型ビームパイプ

 > Quadrupoleの高次モードのインピーダンスを落とす

<u>セル形状</u>

	左エンドセル	中央セル	右エンドセル
半セル長	57.7 mm	57.7 mm	57.7 mm
半径	103.3 mm	103.3 mm	103.3 mm
赤道長軸(Z)	41.0 mm	46.8 mm	42.0 mm
赤道短軸(R)	41.0 mm	42.0 mm	42.0 mm
赤道直線部	1.0 mm	1.0 mm	1.0 mm
アイリス短軸(Z)	9.7 mm	6.7 mm	7.9 mm
アイリス長軸(R)	9.7 mm	13.4 mm	7.9 mm
アイリス直線部	1.0 mm	1.0 mm	1.0 mm
ボア(アイリス)径	42.0 mm	40.0 mm	42.0 mm
Wall angle	15.9 deg	9.2 deg	17.1 deg

加速モードのパラメータ

	Model 2	Model 1		Model 2	Model 1
Frequency	1300 MHz	1300 MHz	Iris diameter	80 mm	70 mm
Rsh/Q	897 Ω	1007 Ω	Qo × Rs	289 Ω	272 Ω
Ep/Eacc	3.0	2.0	Hp/Eacc	42.5 Oe/(MV/m)	42.0 Oe/(MV/m)
Coupling	3.8 %	1.9 %			

ERL100mA運転で要求されるよりも1桁以上、HOMイン ピーダンスを小さくすることができた

BBU不安定性の閾値電流が大幅に改善された KEK-ERL model-2 cavityでは600mA以上が見込まれる

- 上記計算結果は、加速モードのloss factor(~2V/pC)込みの値。
 空洞形状からのロスのみ。RF吸収体は含まず。
- ・ バンチ長3ps(=0.9mm)の時、HOMによるロスファクターは12-2=10V/pC
 → 77pC/bunch, 1.3x2=2.6GHzのビーム繰り返しだと~150W

<u>空洞設計のまとめ</u>

- ERL用に最適化した空洞デザインを行った。
- 大口径のビームパイプを用いることでHOM減衰を強化した。
- 空洞形状も検討し、アイリス径を大きくすることで、特に dipole modeのHOMを強力に減衰できる空洞とした。BBUし きい値に対して1桁近いマージンを持った設計となっている。
- Monopole modeは1.3GHz運転時に問題となる2.6GHz, 5.2GHz周辺にはHOMは存在しない。ただし、それ以外の周 波数にはインピーダンスの高いモードが存在するので、 1.3GHz以外の周波数で運転する際には注意が必要。
- 加速モードはRsh/Q~900, Ep/Eacc=3.0となった。

<u>その他の大電流ERL用空洞(1) JLAB</u>

Concepts

ERL07 R. Rimmer

Take the best from JLab experience and highcurrent storage ring technology*.

General layout:

- Waveguide damped 5-cell cavities.
- Six cavities per cryomodule at 16.7 MV/m -20 MV/m.
- Good packing factor with real-estate gradient ~10-12 MV/m.
- HOM power dissipated at room temperature.
- High-current optimized cell shape gives good efficiency
- Cell shape also has good HOM frequency spectrum.

Voltage	100-120 MV
Length	$\sim 10 m$
Frequency	748.5 MHz
Beam Aperture	>3" (76.2mm)
BBU Threshold	>1A
HOM Q's	<104
Beam power	0-1MW

5/2007

Thomas Jefferson National Accelerator Facility ERL07, Daresbury

🍘 🧞

<u>その他の大電流ERL用空洞(2) BNL</u>

ERL Ampere-Class Cavity

ERL07 I. Ben-Zvi

Fully damped "single mode" cavity at 703.75 MHz Allows ~ampere in 3 pass eRHIC. Also used for electron cooler.

偏心フルート型ビームパイプに よるQuadrupole HOMの抑制

・ 偏心の仕方⇒製作しやすさから

・長さ⇒5cm程度あれば良い

<u>偏心フルートの設計(続き)</u>

・角度⇒20~30°なら両モードとも低くなる

<u>Model空洞による計算との比較</u>

• TESLA空洞3セル

• 計算と測定結果とほぼ一致した

<u>Nb9セル空洞 & 偏心フルート</u>

単セル空洞の縦測定による 性能試験

目的

- 新しく設計したセル形状の検証
 主にセル赤道部でのマルチパクタリング
- 空洞内面の表面処理工程の確認

目的

 ビームパイプ部分の形状の検証 (偏芯フルート、テーパー形状、入カポート、 ピックアップポートなど)

表面処理、縦測定の工程

バフ研磨	溶接部を#400で研磨
バレル研磨	約60um研磨(5時間×2回)
電解研磨(EP-1)	約100um研磨
アニール	750℃、3時間
電解研磨(EP-2)	約20um研磨
超音波洗浄	50℃、1時間
純水高圧洗浄	8MPa、1.5時間
空洞アセンブリ	
ベーキング	130℃、24時間
縦測定	2007/10/11-12に測定

※ バフ研磨を除いて、基本的にSTF-BLグループの工程と同じ

<u>センターセル型単空洞の縦測定結果</u>

- ・セル形状の検証、表面処理工程の確認
- D10電源棟にて縦測定
- 35MV/m以上の高電界を達成
- Q>1e10を25MV/mで達成
- リミットは排気容量によるもの

<u>エンドセル型単空洞の縦測定結果</u>

- ・ビームパイプの構造の検証
- D10電源棟にて縦測定
- ・ 2回目の電解研磨(EP-2)にて、30MV/mを達成
- 22MV/mでQ>1e10をクリア
- フィールドエミッションで制限

<u>回転メカの測定結果(X線データの例)</u>

X-ray mapping (No.9) (26MV/m) (0->379) (240sec/turn) 4 ch1 ch2 20 3.5 ch3 ch4 ch5 3 PIN diode output [V] 0 ch7 ch8 2.5 Eacc [MV/m] ch9 ch10 2 -20 1.5 Eacc -40 1 0.5 -60 0 50 100 150 200 250 300 350 0 Degree [Deg]

炭素抵抗(赤丸)とPIN(青丸)の図面上の配置(回転部のみ)上から順に番号付け

- 高電界でのQ値の劣化とともにX線の発生を確認
- 角度情報より、偏心フルートやポートなどのビームパイプの構造物には問題の無いことを確認

<u>9セル空洞の開発状況</u>

- 昨年度、ERL用9セル空洞が完成
- ・ 電解研磨 → アニール → プリチューニング →
 仕上げ電解研磨 → アセンブリ → ベーキング
 の一連の表面処理工程を終えた。
- 9月にKEK-STF棟にて最初の縦測定を予定

周辺コンポーネント

入力カップラー HOMダンパー 周波数チューナー クライオモジュール

<u>Input couplerの設計</u>

ERLではエネルギー回収と超伝 導空洞の高いQ値のおかげで 投入パワーは少なくてすむが、 実際には高いQL値では超伝導 空洞の共鳴幅が非常に狭くなり、 外乱の影響などによる周波数 のずれからデチューニングが厳 しくそれを補うための投入パ ワーが大きくなる。(右図参照)。 今のところ外乱の影響は大体 50Hz以下と見積もられており、 そこから逆算するとQL=2× 10⁷にて20kWのパワーが必要 となる。さらにpulse でのカプ ラーのconditioningなどを考え て我々はさらに低いQLに変える ような設計方針とした。

·投入パワー: CW 20kW

カップリング可変:QL = 5×10⁶ - 2×10⁷

超伝導空洞カプラーの代表例(1.3GHz対応)

TTF III (for LC & XFEL):

- Adjustable coupling (16 mm)
- Cylinder type ceramic window

我々の

ERLに採用

• 5 kW CW SW (BESSY)

Cornell Injector (for ERL):

- Adjustable coupling (16 mm)^l
- Cylinder type ceramic window
- Upto 50 kW CW TW(Cornell) inner cooling by air

KEK STF-Baseline (for ILC):

- Fixed coupling
- TRISTAN type coaxial ceramic window
 - (CW Max 800kW @500MHz)

<u>ERL main linac のinput couplerのデザイン</u>

具体的な設計のポイント

 ・CW 20kW投入時の熱負荷(特に内導体)を減らす。 インピーダンス 60Ω(内導体の熱負荷を減らす。) セラミックの誘電損失を少なくする。(純度99.7%のものを使用。) 内導体をgas cooling。(inner rodに流す。)
 ・カップリング可変(QL = 5×10⁶ - 2×10⁷) inner rodにて内導体を動かす。 Cold窓と空洞の間にベローズを設け、可変にする。
 ・Reliability: セラミック窓は実績のあるトリスタンタイプの同軸窓を採用。 粉塵混入を避けるため同じものを2つ使う。

カップラー開発の現在の状況

カプラーテストスタンドsetup

IOT 30kWを用いた セラミック窓とベローズの ハイパワーテストスタンドを構築 20kW投入時の温度上昇 マルチパクティングを測定。 上記2つを真空状況下、低温状況下、RFの 反射位相を変えて測定する。また、機械的 特性や組み立て方法の出来を見る。

Clean roomでの組み立て

カプラーテストスタンド全景

`超純水洗浄

Warm窓

Cold窓

• 禄々なHOMカッファーが使用されているが KEK-ERLでは、ビームパイプ型を採用

HOM damper (2)

- バンチ長が短いため、数10GHzまで有効なRF吸収体が必要
- コーネル大学では、2種類のフェライトと1種類のセラミックを 用いる予定
- 70Kで使用する。RF吸収体の接合方法、ヒートサイクルへの 耐性などが課題

HOM damper (3)

コーネル大学のHOMダンパーのデザイン

[SRF2007 M. Liepe]

- 機械式チューナーによる粗い調整
- ・ピエゾ式チューナーによる高速周波数調整が必須

KEKチューナー (スライドジャッキ式)

INFNチューナー(ブレード式)

TTFチューナー(レバー式)

- 空洞、入力カップラー、HOMカップラー、周波数チュ ーナーを整合性良く搭載したデザイン
- 熱侵入の小さいデザイン
- ERLでは、CW運転のため空洞1台あたりのHeの戻り量が多い
- 高圧ガスの申請を通す必要あり
- Microphonicsを抑制したモジュールができれば、入 カRFパワーを削減できる可能性あり

Microphonics(1)

周辺から空洞へ与えられる振動による共振周波数のデチューニング → デチューンした分の振幅と位相を補正する必要あり

[ERL2005 M. Liepe]

Microphonics(2)

Microphonicsを抑制できると、必要なRFパワーが少なくできると。その時、QLを大きくした方が効果的

[ERL2005 M. Liepe]

おわりに

- ERLに向けての超伝導空洞の開発を進めている。
- 空洞自体は、ILC用空洞と同様にLバンドの空洞であるが、ERLの運転がCWであることに起因して、高次モード対策を始めとして、様々なコンポーネントでERL仕様を検討していく必要がある。
- 今後、開発を進めていくべきものがたくさんあるので、
 、皆さんのご協力のもと進めていけたら、と考えております。
- 発表資料作成には、ERLSCグループを始めとする 皆様のご協力をいただきました。どうもありがとうご ざいました。