ビーム・ビームキックによる衝 突点軌道フィードバックシステ ム

1. はじめに

衝突型加速器では、軌道変動により衝突点で両 ビーム間に横方向距離が生じるとルミノシティ が低下する。KEKBでは、ビーム衝突を維持する ためにフィードバックサイクル数秒の軌道フィ ードバックシステムを運用していた[7]。衝突点で ビームの相互位置がずれると相手ビームの電磁 場によりビームがキックされる(ビーム・ビーム キック)。このキックを衝突点近傍のビーム位置 検出器(BPM)で検出しキックが最小になるよう 片側ビームの位置をステアリング磁石で調整す る。

SuperKEKB では、衝突点での垂直方向ビーム サイズ(r.m.s.)の設計値が約 50nm と極めて小さ いため、衝突点でのビーム位置の微小な変位がル ミノシティの低下につながる。特に衝突点に近い 四極磁石の位置変動の影響が厳しい。四極磁石が 変位するとビームはダイポールキックを受け閉 軌道が変化し衝突点で閉軌道のずれが生じる。計 算によれば、磁石の変動と同程度のビーム位置変 位が衝突点で起きる。四極磁石の変位については シミュレーションや測定が行われており、今の所 数 10Hz の振動が主で大きさは 200nm 程度と推 定されている。ただし、後で述べるように LER と HER (LER は低エネルギー陽電子リング、HER は高エネルギー電子リングの略称。)の四極磁石 が同期して変位すれば、それぞれのビームの衝突 点での変位は同方向に同程度となるため衝突点 でのビーム間距離は20nm 程度になる。この変動 はルミノシティの劣化を起こす可能性があるが、 フィードバックサイクル数秒の KEKB のフィー ドバックシステムでは対応できないため、数 10Hz の軌道変動を補正するフィードバックシス テムを用意することになった(以下このシステム を"速いフィードバック"と呼び、KEKB で運用

Fig.1 衝突点での2ビーム間の軌道差とルミのシティの減少率(シミュレーション)[2]。

されたシステムを"遅いフィードバック"と呼ぶ ことにする)。

この講義では、主として垂直方向の速いフィー ドバックについて述べるが、遅いフィードバック についても簡単に触れる。速いフィードバック は"速い"と称していても数 10Hz 程度の閉軌道 のゆっくりした変動に対処するもので、カップル ドバンチ不安定性のような閉軌道周りの速いベ ータトロン振動によるビーム位置変動には無力 である(シミュレーションによれば、閉軌道周り のノイズ状の速い振動の方がゆっくりした変動 より変動の許容値が約 10 倍厳しい[2])。

また、後に述べるように SuperKEKB でのビー ム衝突方式では水平方向ビーム・ビームキックが 弱いため、水平方向衝突点軌道フィードバックに はビーム・ビームキックを使わないディザリング という方式が採用されたがこの講義では扱わな い。

2. ビーム位置変動の推定

衝突点でのビーム間垂直方向軌道差のルミノ シティに対する影響はコンピュータシミュレー ションで見積もられており[1,2]、衝突点垂直方向 ビーム幅(r.m.s.)の 20%(50%)のずれで 2%(10%) のルミノシティロスになる (Fig. 1 を参照。)。

	K [/m]	Distance from IP [m]	β _Q [m]	β _{IP} [mm]	$\Delta \psi_y/2\pi$	COD@IP for 1µm Q-offset [µm]
QC1LP	-1.717	0.912	2504.3	0.27	0.24995	-0.706
QC1LE	-1.142	1.390	5462.4	0.3	0.24997	-0.731
QC1RP	-1.712	0.912	2567.7	0.27	0.24996	-0.713
QC1RE	-1.070	1.430	5592.6	0.3	0.24997	-0.693
QC2LP	0.8416	1.909	962.2	0.27	0.25004	0.2145
QC2LE	0.6502	2.679	1923.3	0.3	0.25030	0.2470
QC2RP	0.8392	1.976	924.6	0.27	0.25005	0.2097
QC2RE	0.5557	2.944	1806.9	0.3	0.25004	0.2046

Table 1 QC1, QC2 が垂直方向に 1µm 変位したとき衝突点(IP)に生 じる閉軌道(COD)[3]。

衝突点に最も近い 4 極磁石 QC1LP, QC1LE, QC1RP, QC1RE と、次に近い QC2LP, QC2LE, QC2RP, QC2RE の位置が垂直方向に変位したと きの衝突点でのビーム位置変位は、次の閉軌道の 計算式から見積もることができる(四極磁石の名 称:L(R) は衝突点をリング内側から見て左(右) 側、P(E)はLER(HER)の意。)。

$$\Delta y_{IP} = \frac{\sqrt{\beta_{Q}\beta_{IP}}}{2\sin\pi v_{y}} \cos\left(\pi v_{y} - \left|\Delta\psi_{y}\right|\right) K \Delta y_{Q}$$
(2-1)

ここで $\Delta y_{Q}, \Delta y_{IP}, \beta_{Q}, \beta_{IP}, v_{y}, \Delta \psi_{y}, K$ はそれぞれ四極 磁石の変位、衝突点での垂直軌道のずれ、四極磁 石および衝突点でのベータ関数、ベータトロンチ ューン、衝突点-四極磁石間のベータトロン振動の 位相差、四極磁石の K 値である。QC1 について は、 $\Delta \psi_{y} \sim \pi/2, \beta_{Q} \sim L^{2}/\beta_{IP}$ より、おおよそ、

$$\Delta y_{IP} \sim \frac{1}{2} L K \Delta y_{Q} \tag{2-2}$$

となる。L は衝突点と四極磁石間の距離である。 QC1LP での値 L=0.91m,K=-1.7m⁻¹を使うと Δy_{IP} =-0.77 Δy_Q となり四極磁石の変位と同程度の ビーム変位が衝突点に生じることが分かる。

(2-1)式により QC1,2 が 1µm 変位したときの衝 突点でのビーム位置変位について計算された結

果を Table 1 に示す[3]。この結果 から QC1(QC2)では、変位の 70%(20%)程度のビーム位置変位 が衝突点に生じることがわかる。 QC1 の影響が QC2 よりも大き い。また、L 側の HER 用 QC1LE と LER 用 QC1LP の結果を見る と両磁石が同じ方向に同じ量変 位したとき衝突点での軌道変位 がほぼ同じになることがわかる。 このことは、R 側の QC1 につい ても、また両側の QC2 について も同様である。つまり、LER と HER の同種の磁石が一緒に動け ば、衝突点でのビーム間距離は磁 石が別々に相関なしに変位した

ときの約 5%(QC1 の場合)に減少する。磁石の振動の振幅だけでなく磁石間の振動位相が重要である。SuperKEKBの QC1,QC2 は L 側、R 側それぞれ同じ移動架台に載っているので、床振動による磁石の振動については、L 側、R 側の磁石がそれぞれ同じ位相で振動することが期待できる。

SuperKEKB では、衝突点ベータ関数を変える とき通常 QC1,QC2 の K 値は変えない。衝突点と

Fig. 2 QC1RP, QC1RE の振動のパワースペク トラム密度(P.S.D.)(シミュレーション) [4]。

Fig. 3 QC1RP, QC1RE の振動の積分振幅 (シミュレーション) [4]。

Fig. 4 周波数応答解析より求めた QC1RP と QC1RE の振動位相[4]。

QC1,QC2 間の転送行列は変わらないので表の閉 軌道値(cod 値) は衝突点ベータ関数の大きさにか かわらず成り立つ。

磁石の振動評価は、計算機シミュレーションや 実機の振動測定により行われている[4]。Fig.2に QC1RP と QC1RE の垂直方向振動のパワースペ クトラム密度(P.S.D.)のシミュレーション値を、 Fig.3に積分振幅のシミュレーション値を示す。 周波数fでの積分振幅とはパワースペクトラム密 度を高周波数側からfまで積分した量の平方根で あり、積分範囲の振動成分による振動振幅の r.m.s.値である。シミュレーションは有限要素法 解析プログラム ANSYS によって行われ、床振動 の測定データ(Fig.2の"Input")を入力し磁石の 振動を計算する。Fig.4には、周波数応答解析か ら求めた QC1RP と QC1RE の位相を示す。お よそ 80 Hz までは互いに同じ位相で振動してい る。P.S.D.を見ると 20 数 Hz と 70Hz 付近にピー クがある。この周波数近傍の振動による振動振幅 は、この振動がそれより高い周波数領域で支配的 なら、おおよそ積分振幅の段差の大きい側に等し い。20 数 Hz の変動では約 200nm である。この 周波数では QC1RP と QC1RE は同位相で振動し ているから、衝突点でのビーム間距離は 20nm 程 度と見積もられる。このとき、ルミノシティロス は6%程度である。70Hzの振動振幅は、20数Hz の振動より一桁程度小さい。QC1LP,QC1LE につ いても同様の解析が行われ、R側よりも振動が小 さいという結果が得られている。

以上まとめると、QC1,QC2 の振動に対処する にはフィードバックシステムとしては 50Hz 程度 以下の振動をダンプする性能を有すれば良いこ とになる。

3. ビーム・ビームキック

Table 2 に SuperKEKB のパラメータを示す。 SuperKEKB はナノビーム方式[5]を採用してお り 2 ビームは衝突点で水平方向に 83mr の交差角 をもって衝突する。このとき、相手のビームから 受けるキック (ビーム軌道の角度変化) は、2 ビ ーム間の距離Δx*,Δy*が小さい時以下のように書 ける。

$$\Delta {x'}^{*p,e} = \frac{2\pi}{\beta_x^{*p,e}} \xi_x^{p,e} \Delta x^*$$
(3-1)

$$\Delta {y'}^{*_{p,e}} = \frac{2\pi}{\beta_{y}^{*_{p,e}}} \xi_{y}^{p,e} \Delta y^{*}$$
(3-2)

ここで、上付き文字 p(e)は、陽電子(電子)側の 量を表す。*は衝突点(IP)での量を、x(y)は水平(垂 直)ビーム位置を、プライム()は角度を表す。 $\xi_{x,y}^{p,e}$ はビーム・ビームパラメータと呼ばれる量 で、以下のように与えられる[6]。

	LER	HER	
Beam Energy(E)	4.000	7.007	GeV
Half Crossing Angle (ϕ_x)	41	.5	mrad
Emittance (ε_x)	3.2	4.6	nm
Emittance ratio($\varepsilon_{y/} \varepsilon_x$)	0.27	0.28	%
Beta Function at IP(β^*_x / β^*_y)	32 / 0.27	25 / 0.30	mm
Beam Current(I)	3.6	2.6	А
Number of Bunches/ring (n _b)	2500		
Bunch Length (σ_z)	6.0	5.0	mm

Table 2 SuperKEKB のパラメータ。

$$\xi_x^{p,e} = \frac{r_e N^{e,p}}{2\pi\gamma^{p,e}} \frac{\beta_x^{*p,e}}{\sigma_{x,eff}^{*e,p} \left(\sigma_{x,eff}^{*e,p} + \sigma_y^{*e,p}\right)}$$
(3-3)

$$\xi_{y}^{p,e} = \frac{r_{e}N^{e,p}}{2\pi\gamma^{p,e}} \frac{\beta_{y}^{*p,e}}{\sigma_{y}^{*e,p} \left(\sigma_{x,eff}^{*e,p} + \sigma_{y}^{*e,p}\right)}$$
(3-4)

$$\sigma_{x,eff}^* = \sqrt{\left(\sigma_x^*\right)^2 + \left(\sigma_z\phi_x\right)^2}$$
(3-5)

N はバンチ内粒子数、γはローレンツ因子、 r_e は古 典電子半径、 ϕ_x は交差角の半分の角度である。正 面衝突の場合は、 $\sigma^*_{x,eff}=\sigma^*_x$ である。

表の SuperKEKB の設計パラメータを使うと、

$$\sigma_x^{*p} \sim 10 \mu m, \ \sigma_x^{*e} \sim 11 \mu m$$

$$\sigma_y^{*p} \sim 48 nm, \ \sigma_y^{*e} \sim 62 nm$$

$$\sigma_{x,eff}^{*p} \sim 250 \mu m, \ \sigma_{x,eff}^{*e} \sim 210 \mu m$$

$$\xi_x^p = 0.0027, \ \xi_x^e = 0.0012$$

$$\xi_y^p = 0.078, \ \xi_y^e = 0.073$$

となる。また、衝突点でのビーム間距離が $\sigma^*_{x,y}$ のとき、衝突点から 0.5m 離れたところにある BPM での軌道変化は、x 方向で約 2 μ m, y 方向で約 45 μ m となる。衝突点での軌道を 1/10 σ^*_y 程度に制御するために BPM に要求される分解能は 1 μ m 程度である。ナノビーム方式では、正面衝突 方式と比べて ξ_x が小さいためビーム・ビームキッ クの測定が難しくなる。SuperKEKB では、x 方向 の衝突点軌道フィードバックにはビーム・ビー ムキックを使わず、ビームの水平位置を約 80Hz でわずかに振動させその時のルミノシティ変化 を見て衝突点ビーム位置を調整するディザリン グという方式を採用している。

次に、フィードバックの目標値に用いている カノニカルキックとカノニカル角について述べ る。Fig. 5 のような座標系を取ると、次の関係式 が成り立つ[7]。

$$\Delta y'_{e}^{*} = y'_{e}^{*a} - y'_{e}^{*b}$$

$$\Delta y'_{p}^{*} = y'_{p}^{*a} - y'_{p}^{*b}$$

$$y_{e}^{A} = m_{33}^{A} y_{e}^{*} + m_{34}^{A} y'_{e}^{*a}$$

$$y_{e}^{B} = m_{33}^{B} y_{e}^{*} + m_{34}^{B} y'_{e}^{*b}$$

$$y_{p}^{C} = m_{33}^{C} y_{p}^{*} + m_{34}^{C} y'_{p}^{*a}$$

$$y_{p}^{D} = m_{33}^{D} y_{p}^{*} + m_{34}^{D} y'_{p}^{*b}$$

$$\Delta y'_e^* = -k_e \Delta y^* = -\frac{2\pi}{\beta_y^{*e}} \xi_y^e \Delta y^*$$
$$\Delta y'_p^* = k_p \Delta y^* = \frac{2\pi}{\beta_y^{*p}} \xi_y^p \Delta y^*$$

$$\Delta y = y_e - y_p \tag{3-6}$$

ここで、上付き文字 A,B,C,D は、それぞれ電子用 下流側 BPM、電子用上流側 BPM、陽電子用下流

Fig.5カノニカルキックとカノニカル角を 求めるための座標系。

側 BPM、陽電子用上流側 BPM を表す。上付き文字 a(b)は衝突前(後)の量を、下付き文字 e(p)は電子(陽電子)を表す。mA,B,C,D は衝突点 IP から BPM A,B,C,D までの 4x4 転送行列である(転送されるベクトルは(x,x',y,y'))。

以上の式から、BPM での軌道と衝突点での 2 ビーム間の距離を関係づける、衝突点でのビーム 軌道の角度を含まない、カノニカルキックΔy'*can の式が次のように求まる。

$$\Delta y_{can}^{\prime *} \equiv \Delta y_{bb,e}^{\prime *} - \Delta y_{bb,p}^{\prime *} = -K_{y} \Delta y^{*}$$
(3-7)

$$\Delta y_{bb,e}^{\prime*} \equiv \frac{\frac{y_e^A}{m_{34}^A} - \frac{y_e^B}{m_{34}^B}}{m_e} = \frac{\Delta y_e^{\prime*}}{m_e} + y_e^*$$

$$\Delta y_{bb,p}^{\prime*} \equiv \frac{\frac{y_p^C}{m_{34}^C} - \frac{y_p^D}{m_{34}^D}}{m_p} = \frac{\Delta y_p^{\prime*}}{m_p} + y_p^*$$

$$K_y = \frac{k_e}{m_e} - \frac{k_p}{m_p} - 1$$

$$m_e = \frac{m_{33}^A}{m_{34}^A} - \frac{m_{33}^B}{m_{34}^B}, m_p = \frac{m_{33}^C}{m_{34}^C} - \frac{m_{33}^D}{m_{34}^D}$$

衝突点から BPM までがドリフト空間で BPM 衝突点間距離 L が 4 つの BPM で等しいとき近似
 的に、

$$\Delta y_{can}^{\prime *} \sim -Lk_{e,p} \Delta y^{*} \tag{3-8}$$

Fig.6フィードバックシステム機器のトンネル 内配置。

となり、カノニカルキックはビーム・ビームキッ クによる BPM での軌道ずれにおおよそ等しくな る。

2 ビーム間の衝突時交差角と BPM での軌道を 関係づけるカノニカル角θ*y,can についても以下の ように求まる。

$$\theta_{y,can}^{*} = \frac{\frac{y_{e}^{A}}{m_{33}^{A}} - \frac{y_{e}^{B}}{m_{33}^{B}}}{n_{e}} + \frac{\frac{y_{p}^{C}}{m_{33}^{C}} - \frac{y_{p}^{D}}{m_{33}^{D}}}{n_{p}}$$

$$= \left(\frac{-k_{e}}{1 - \frac{m_{33}^{A}}{m_{34}^{A}} \frac{m_{34}^{B}}{m_{33}^{B}}} + \frac{k_{p}}{1 - \frac{m_{33}^{C}}{m_{34}^{C}} \frac{m_{34}^{D}}{m_{33}^{D}}}\right) \Delta y^{*} + \left(y_{e}^{**b} + y_{p}^{**b}\right)$$

$$n_{e} = \frac{m_{34}^{A}}{m_{33}^{A}} - \frac{m_{34}^{B}}{m_{33}^{B}}, n_{p} = \frac{m_{34}^{C}}{m_{33}^{C}} - \frac{m_{34}^{D}}{m_{33}^{D}}$$
(3-9)

 $\Delta y^*=0$ のとき、 $\theta^*_{y,can}$ は2ビーム間の衝突時交差 角に等しい。 $\Delta y^* \neq 0$ の時は右辺第一項が誤差に なるが、衝突点から BPM までがドリフト空間の とき、

$$\frac{1}{2}(k_p - k_e)\Delta y^*$$

であり、ビーム間距離のフィードバックでΔy*を 1/10σy*~5nm 以下に抑えているとすれば、誤差は 0.6µrad 程度である。

4. フィードバックシステムの構成

Fig. 6 に衝突点周りに設置されたフィードバッ ク機器の鳥瞰図を示す。衝突点(IP)から約0.5m離

Fig.7フィードバックシステム構成要素の 配置。

れたところに衝突点を挟んで両側に各リング2台 ずつ計4台の BPM がある。衝突点の垂直軌道は HER に置かれた計8台のステアリング磁石で制 御される。BPMの検出回路、フィードバックコン トローラ、ステアリング電源コントローラ、ステ アリング磁石電源は筑波実験室地下4階の制御室 に置かれている。Fig.7にシステム構成要素の配 置を示す。

4.1. ビーム位置モニタ(BPM)

4.1.1. BPM 電極と信号レベル

BPM は 4 つのボタン電極をもつ静電型のモニ タで、電極は、チェンバ径 20mm のチェンバに水 平面から測って 45,135,225,315 度方向に取り付 けてある[8]。Fig. 8 にボタン電極の断面図を示す。 ボタン電極は電極が受けるビームパワーを減ら すために径 1.8mm のロッドにしてある。真空シ ールとロッドのサポートのためにはアルミナが 用いられている。ボディとロッドはチタン製で、 キュプロニッケル(Cu-Ni)のフランジにろう付け されている。ビームチェンバは銅製なので、ボタ ンブロックはチェンバに電子溶接される。ヘッド とケーブルとの接続には熱膨張による電気的接 触の悪化を避けるためリバースタイプの SMA コ ネクタが用いられている。

BPM の電極で発生する電圧波形は次式で表される[9]。

Fig. 8 BPM 用ボタン電極[8]。

$$v(t) = \frac{l}{2\pi a} \frac{1}{C} \int_{t_0}^t \frac{dq(t')}{dt'} \exp\left[-\frac{t-t'}{CR}\right] dt' \qquad (4-1)$$

$$\frac{dq(t)}{dt} = \frac{\sqrt{2}Nec}{\sqrt{\pi}\sigma_z} \exp\left[-\frac{l^2}{8\sigma_z^2}\right] \exp\left[-\frac{\left(z_c - z_0(t)\right)^2}{2\sigma_z^2}\right] \\ \times \sinh\left[-\frac{\left(z_c - z_0(t)\right)l}{2\sigma_z^2}\right]$$

ここで、C,R,l,a,q(t)は電極とビームパイプ間の静 電容量、負荷抵抗、電極長、ビームパイプ半径、 電極に誘起される電荷量である。また、 z_c は電極 の中心座標、 $z_0(t)$ はバンチの中心位置であり、 σ_z,N,e,c はバンチ長、バンチ内電子数、素電荷、 光速である。

 (4-1)式を用い、BPM の電極容量を 0.3pF と仮 定すると、3.6A、バンチ数 2500 のとき電極端に
 発生する信号は Fig. 9 の様になる。また、電極部 を通過する平均信号パワーは、

$$\overline{P} = \frac{1}{T} \int_0^T \frac{v(t)^2}{R} dt$$
(4-2)

より、バンチ 間隔 4ns の場合、0.81W となる。 検出周波数 509MHz でのパワーは電圧波形をフ ーリエ解析することで求めることができ・4.3dBm である。電極から信号処理回路までのケーブルロ スはL側、R側でそれぞれ・13.2 および・9.0dB な ので信号処理回路入り口での信号レベルは、L側、

Fig.9 BPM 電極端での電圧波形。

Fig. 10 BPM 検出器のブロック図(1 チャネ ル分、LPF: l ow-pass filter, ATT: attenuator, BPF: band-pass filter, Amp: amplifier, LO: local oscillator, DDC: digital down converter, NCO: numerically controlled oscillator)。

R側でそれぞれ-17.5 および-13.3dBm である(dB については付録1を参照。)。

4.1.2. 信号処理回路と信号対雑音比(SNR)

Fig. 10 に信号処理回路のブロック図を示す。ビ ーム信号の 509MHz 成分を 16.9MHz の中間周 波数(IF)にアナログダウンコンバートした後 AD 変換し、AD 変換されたディジタル信号を Digital Down Converter(DDC) でベースバンド に変換後ディジタルフィルタで帯域制限する。こ のとき、信号パワーから期待される信号対雑音比 (SNR)は以下のように評価される[10]。

1)熱雑音による SNR

アナログ回路出力端(IF out)での熱雑音による SNR を求める。アナログ回路入力端での信号およ び雑音パワー、出力端での信号および雑音パワー をそれぞれ S_i,N_i, S_o,N_o とすると、次の関係があ る。

$$S_o / N_o = \frac{1}{F} (S_i / N_i)$$
 (4-3)

ここで、Fは雑音指数と呼ばれる量で、アナログ 回路中で発生する雑音の指標である。熱雑音のパ ワーN_iは、 $N_i = k_B TB$ と書ける。ここで、kB,T,B はそれぞれボルツマン定数、絶対温度、熱雑音の バンド幅である。T=300K とし B にサンプリン グ 周 波 数 Fs の ADC への入力バンド幅 Fs/2=49.2MHz を代入すると、Ni =-96.9dBm と なる。出力端(IF out)での SN 比は F[dB]=35.7dB より、

$$(S_o / N_o)[dB] = S_i[dBm] - (F[dB] + N_i[dBm])$$

= $S_i[dBm] + 61.2[dBm]$

となる。

2)ADC 出力の SNR

ADC入力端での信号および雑音パワー、出力端 での信号および雑音パワーをそれぞれ S_i,N_i, S_o,N_oとすると、次の関係がある。

$$\begin{cases} S_o = S_i \\ N_o = N_i + N' \end{cases}$$
(4-4)

ここで、N'は ADC で発生する雑音で、ADC 固有 のダイナミック性能による N(dynamic)とサンプ リング時間ジッタによる N(jitter)に分けられる。 ダイナミック性能による SNR(dynamic)は ADC のデータシートより、

 $SNR(dynamic)[dB] = S_i / N(dynamic)[dB] = 77 dB$

である。サンププリング時間ジッタによる SNR(jitter)は、入力信号 V を $V = A \sin(2\pi F_{signal} t)$ とするとき、

$$\Delta V = A \cdot 2\pi F_{signal} \cos(2\pi F_{signal} t) \Delta t \tag{4-5}$$

より、

 $SNR(jitter) = V_{r.m.s} / \Delta V_{r.m.s.} = 1 / (2\pi F_{signal}\sigma_{jitter})$ (4-6) となる。ここで、 σ_{jitter} はサンププリング時間ジッ

タの r.m.s.値である。σ_{jitter} は IF 回路出力信号の ジッタσIF とサンプリングクロックジッタσ_{clock}の 二乗和であり、

$$\sigma_{jitter} = \sqrt{\sigma_{IF}^2 + \sigma_{clock}^2}$$
(4-7)

である。 今の場合、 F_{signal} =FIF=16.9MHz, σ IF=31.66ps, σ_{clock} =1.2psより、

$$SNR(jitter)[dB] = 49.46dB$$

となる。

ADC 出力の SNR(ADC)は、(4-4)式より、

 $\left(S_{o} / N_{o}\right)_{ADC} = 1 / \left(\frac{1}{SNR(ADC \ input)} + \frac{1}{SNR(dynamic)} + \frac{1}{SNR(jitter)}\right)$ (4-8)

と書ける。ここで、

$$SNR(ADC \ input) = (S_i / N_i)_{ADC} = (S_o / N_o)_{IF \ out}$$

である。

3)ディジタルフィルタのプロセシングゲイン

Fig. 11 BPM 検出器入力の信号レベルと出力 での信号対雑音比。

Fig. 12 BPM 検出器入力の信号レベルと位置 分解能。

雑音の周波数分布が一様とする。フィルタの遮 断周波数を Fc とすると、サンプリング周波数 Fs でサンプルした信号の帯域幅は Fs/2 だから、フ ィルタ通過前の雑音パワーPN と通過後の雑音パ ワーP'Nの関係は、 $P'_{N} = (2F_{c}/F_{s})P_{N}$ となる。フィ ルタ通過後の SNR は、dB 表示で

$$SNR[dB] = \left(S_o / N_o\right)_{ADC}[dB] -10\log(F_c / (2F_c))[dB]$$
(4-9)

となる。今の場合、Fs=98.4MHz, Fc=2kHz より、 $10\log(F_s/(2F_s)) = 43.9dB$ である。

位置分解能 σ (resolution)は、チェンバ半径を R とすると、

$$\sigma(resolution) = \frac{1}{2} \frac{R}{\sqrt{2}} \frac{1}{SNR}$$
(4-10)

で与えられる(付録2参照。)。アナログ回路への 信号入力レベルとSNRの関係をFig.11に、信号 入力レベルと分解能の関係をFig.12に示す。設 計電流値では約0.2µmの分解能が得られる。Fig. 11 で SNR が飽和するのは ADC サンププリング 時間ジッタの SNR が効いてくるためである。

4.1.3. 信号処理回路の詳細

Fig. 10 に示すように、信号処理回路はアナログ 処理部とディジタル処理部の2つの部分で構成さ れている[11]。アナログ処理部では、ビーム信号 はダウンコンバータによって 16.9MHz の IF 信 号に変換され ADC に送られる。又、RF 信号を基 準入力として PLL によってサンプリングクロッ ク、Local 信号が生成される。ディジタル処理部 はµTCA 規格のボード(BPM 用フィルタボー ド)に収められている。ADC によるデータ取得、 DDC による IF-ベースバンド変換(I/Q 検波)、 2段の CIC(Cascaded Integrator–Comb)フィルタ (CIC1, CIC2) および 低域通過型 FIR(Finite Impulse Response) フィルタによる帯域制限、な らびに絶対値計算と位置計算が行なわれ、位置情 報は 32kHz のレートでフィードバックコントロ ーラに送られる。これら全ての処理は、ボード上 の FPGA(Xilinx Vertex 5[12])で実行され、デー タ通信やデータの読み出しは、SuperKEKB のコ ントロールシステムである EPICS の IOC 経由 で行なわれる。EPICS IOC は FPGA に内蔵され たハードコアの PowerPC 上の Linux で動作 する。以上のディジタル処理は KEKB で開発さ れた低レベル RF システム用の制御基板を基にし ている[13]。

ディジタルフィルタは 2 段の CIC フィルタと FIR から構成される。ディジタルフィルタに要求 される周波数帯域幅は数百 Hz 以下なので、ADC でサンプリングされたデータについて CIC フィ ルタでデシメーション (データの間引き)を行っ てデータ量を落としたあと、FIR でフィルタ特性 を決定する方式となっている。

1)CIC フィルタ

CIC フィルタはカスケード接続された積分器 (Integrator)と櫛形(Comb)フィルタから構成さ れ、デシメーションと低域通過型フィルタの機能 を同時に実現できる。乗算を使わず加減算のみで 構成できるため高速であり、計算に使うリソース も少なくてすむ。Fig. 13 に CIC フィルタ[14]の ブロック図を示す。x[n]を入力、y[n]を出力とする と、積分器は次の差分方程式で表される。

$$y[n] = y[n-1] + x[n]$$
 (4-11)

この式を z 変換(付録3参照。)すると、

$$Y(z) = z^{-1}Y(z) + X(z)$$

より、

$$Y(z) = \frac{1}{1 - z^{-1}} X(z)$$

となり、伝達関数は、

$$H_I(z) = \frac{1}{1 - z^{-1}} \tag{4-12}$$

となる。同様に、櫛形フィルタの差分方程式は、 デシメーション後のレート(Fs/R)で、

$$y[n] = x[n] - x[n - M]$$
(4-13)

となる。こで、R はレート変換ファクタ(間引き数)である。また、M は differential delay と呼ばれ通常は 1 か 2 に制限される。z 変換すると伝達関数は、 $1-z^{-M}$ となるが、デシメーション前のレート(Fs)に等価変換すると(付録 4 参照。)、

$$H_{C}(z) = 1 - z^{-RM}$$
(4-14)

となる。CIC フィルタの伝達関数は、サンプリン グレート Fs のとき、

$$H(z) = H_{I}^{N}(z)H_{C}^{N}(z) = \frac{\left(1 - z^{-RM}\right)^{N}}{\left(1 - z^{-1}\right)^{N}} = \left[\sum_{k=0}^{RM-1} z^{-k}\right]^{N} (4-15)$$

となる。周波数応答は、(4-15)式に $z = e^{j(2\pi F_{in}/F_s)}$ を 代入することで、

$$\left|H(z)\right| = \left|\sin\pi M f / \sin(\pi f / R)\right|^{N}$$
(4-16)

となる。ここで $f \equiv F_{in} / (F_s / R)$, $f / R = F_{in} / F_s$ であり、 F_{in} はフィルタへの入力信号の周波数である。R が大きい時は、

$$|H(z)| \approx \left| RM \frac{\sin \pi M f}{\pi M f} \right|^N$$
 for $0 \le f < 1/M$ (4-17)

と近似される。Table 3 に CIC1, CIC2 のパラメー タを、Fig. 14 に周波数特性を示す。

	CIC1	CIC2
ステージ数(N)	5	5
Differential delay(M)	1	1
デシメーション(R)	32	96
処理レート(MHz)	98.398	3.106

Table 3 CIC1,2 のパラメータ。

FIR には等リップルフィルタを用いている [15,16]。等リップルフィルタは、例えばカイザー 窓関数法に比べて同じ減衰量を与えるフィルタ 長を小さくできるため[16]採用されている。等リ ップルフィルタでは、フィルタ特性を余弦関数 $P(\omega)$ で近似し、所望特性 $D(\omega)$ との誤差 $E(\omega)$ の最 大値が最小になるように $P(\omega)$ を求める (min-max 近似)。ここで、 ω は周波数 F のときの正規化角周 波数 $\omega = 2\pi F/Fs$ である (Fs は FIR の処理レート で 32kHz)。具体的にはタイプ1 (フィルタ長 N が奇数、インパルス応答が偶対称)の FIR の場合、

$$E(e^{j\omega}) = W(e^{j\omega}) \Big[D(e^{j\omega}) - P(e^{j\omega}) \Big]$$
(4-18)

$$P(e^{j\omega}) = \sum_{n=0}^{(N-1)/2} a(n) \cos n\omega \qquad (4-19)$$

より $\min(\max[E(e^{i\omega})])$ を満たす a(n)を求める [15,16]。交番定理[15]により、誤差特性について リップルの最大値が等しい等リップル特性にな る。解を求めるために Remez のアルゴリズム[15] が用いられるがここでは説明を省略する。Table 4 に等リップルフィルタのパラメータ (パラーメー タの意味については Fig. 15 を参照。)を、Fig. 16 にその周波数特性を示す。Fig. 17 にこのフィルタ のインパルス応答(フィルタ係数)を示す。

このフィルタは位相特性が、

$$\theta(\omega) = -[(N-1)/2]\omega, \quad \omega = 2\pi F / F_s \quad (4-20)$$

Table 4 FIR のパラメータ。

フィルタ長(N)	73
通過帯域開始位置での周波	0.01875
数(fpass)	
阻止帯域終端での周波数	0.0709
(fstop)	
通過帯域内で許容されるリ	0.1dB
ップル量(Apass)	
阻止帯域での減衰量(Astop)	80dB

(f は正規化周波数)

Fig. 15 FIR パラメータの定義。

性。

Fig. 17 FIR フィルタのインパルス応答。

の線形位相特性を持ち(付録5参照。)、位相遅延 と群遅延が等しくなる。遅延は生ずるが入力波形 は崩れない。群遅延τはタイプ1のFIRでは、

 $\tau = -(d\theta / d\omega) / F_s = (N-1) / 2 / F_s$ (4-21)

である。今使用しているフィルタのパラメータで はτ=1.1ms である。

4.2. フィードバックコントローラ

Fig. 18 にフィードバックコントローラのブロ ック図を示す。BPM 用フィルタボードから Aurora 規格の高速シリアルデータ転送で送られ る4台のBPMの位置情報を入力し、FPGA(Xilinx Vertex 5[12])によってフィードバックの計算を行 いステアリング磁石のキック角を出力する。フィ ードバックの経路としてカノニカルキックとカ ノニカル角の2経路がある。出力レートは32kHz である。FPGA でのフィードバックの計算(現在 は PID 制御)は、変更が容易なように、 MATLAB/Simulink[17] にリンクした Xilinx System Generator を使ってコーディングでき る。コントローラで計算されるカノニカルキック とカノニカル角は4096 データ長のバッファに保 存され、後で読み出すことでフィードバック性能 の評価ができる。コントローラは μ TCA 規格の ボードであり[18]、PowerPC 上の Linux で動作 する EPICS IOC を内蔵している。

Fig.19 に PID (Proportional-Integral-Derivative)コントローラのブロック図を示す。 誤差入力 e[n],制御出力 u[n]の z 変換を E(z),U(z)、コントローラの z 変換を C(z)とする と、

$$U(z) = K_{P} (U_{P}(z) + U_{I}(z) + U_{D}(z)) E(z) \quad (4-22)$$

$$\begin{cases} U_{P}(z) = P(z)E(z) \\ U_{I}(z) = I(z)E(z) \\ U_{D}(z) = D(z)E(z) \end{cases}$$

と書ける。ここで、P(z),I(z),D(z)は、それぞれ、 比例、積分、微分のコントローラであり、ブロッ ク図より以下のように書ける(前進オイラー法)。

Fig. 18 フィードバックコントローラのブロック 図。

Fig. 19 PID 制御のブロック図。

$$P(z) = 1$$

$$I(z) = K_{I} \frac{T_{s}}{z-1}$$

$$D(z) = \frac{K_{D}}{\frac{1}{N} + \frac{T_{s}}{z-1}}$$
(4-23)

ここで、N はフィルタ係数である。(4-23)式を、 差分方程式で書くと以下のようになる。

1)比例

$$u_p[n] = e[n] \tag{4-24}$$

2)積分

$$\left(K_{I}T_{S}E(z)+U_{I}(z)\right)z^{-1}=u_{I}[n]$$

より、

$$u_{I}[n] = K_{I}T_{S}e[n-1] + u_{I}[n-1]$$
(4-25)

3)微分

$$u_{D}[n] = NK_{D}(e[n] - e[n-1]) + (1 - NT_{S})u_{D}[n-1] (4-26)$$
特に、NTs=1 のとき、

$$u_{D}[n] = \frac{K_{D}}{T_{s}} (e[n] - e[n-1])$$
(4-27)

となる。N=∞のときは、

$$u_{D}[n] = \frac{K_{D}}{T_{S}} \left(e[n+1] - e[n] \right)$$

となり、前進オイラー法では因果関係を満たさない。

(フィルタ係数の意味:簡単のため連続時間システムで考えると、微分のコントローラは $<math>D(s) = K_p / (1/N+1/s)$ のように書ける。例えば f(t) = tに対する D(s)の効果を計算すると、 $D(s) / s^2$ の逆ラプラス変換より、1 - Exp(-Nt)と なり微分が $\tau = 1/N$ 程度なまる。)

4.3. ステアリング電源コントローラ

Fig. 20 にステアリング電源コントローラのブ ロック図を示す。コントローラは、ステアリング 磁石のキック角を入力して磁石電源の制御入力 レベルに換算し、16bit DAC によってアナログ信 号に変換して磁石電源へ出力する。入力は2種類 あり、1 つはフィードバックコントローラから光 ファイバ経由で 32kHz のレートで送られる速い フィードバック用のキック角である。もう一つは EPICS channel access 経由で送られる更新レー ト 1Hz 程度の遅いキック角であり、垂直方向遅い フィードバック、水平方向ディザリングフィード バック、水平垂直の DC (オフセット) バンプ軌 道の設定に使われる。2 種類のキック角はコント ローラ内で足し算され磁石のキック角となる。

コントローラは MTCA.4 に準拠したボードで ある[19]。FPGA には Xilinx Zynq SoC[12]が使わ れ、Linux 上で動く EPICS IOC を内蔵している。

4.4. 磁石、電源、真空チェンバ

ステアリング磁石は積層鋼板を鉄心に持つ電 磁石である。また、ステアリング磁石電源はアナ ログ電圧で制御される市販の定電流電源である。 フィードバック系の設計段階で KEKB 用のステ アリング磁石(積層鋼板の鉄心)にコイルを巻い てL=20mH,R=0.6Ωの負荷を作り、現在使用して いる電源と同型の電源へステップ状の制御入力 (定格電圧で制限される時間変化の最大値が 38μs

Fig. 20 ステアリング電源コントローラのブロック図(DSP:フィードバック コントローラ)。

に対応する入力)を加えたときの磁場の立ち上が り時定数を測定すると 0.14ms であった。

磁石が置かれる場所の真空チェンバはうず電 流による磁場の追従遅れを小さくするため厚さ 5mmのステンレス(SUS)で作られている。磁場計 算によると、厚さ 5mmの SUS チェンバのとき 磁石電流のステップ状変化に対する磁場の立ち 上がり時定数が 0.21ms であった。チェンバ内面 にはインピーダンスを減らすために厚さ10µmの 銅がコーティングされている。磁場計算によれ ば、この効果により立ち上がり時定数は 0.23ms となった。

Fig. 21 速いフィードバックシステムのブロッ ク図。

5. 速いフィードバックシステム

Fig. 21 にフィードバックシステムのブロック 図を示す。左からフィードバックの目標値が入力 されモニタ値と目標値との誤差が計算される。誤 差は PID コントローラに入力され、この出力によ りステアリング電源が動き、磁石が励磁される。 電源と磁石の入力に対する応答は次の伝達関数 で表される1 次遅れで表現する。

$$G_m(z) = Z \left[\frac{1 - e^{-sT_s}}{s} \frac{1}{\tau_m s + 1} \right] = \frac{1 - e^{-T_s/\tau_m}}{z - e^{-T_s/\tau_m}}$$
(5-1)

ここで、左から2番目の式の左の項は0次ホール ド(付録6参照。)を表し、右の項が1次遅れを 表すラプラス変換の項である。ZはZ変換を表す。 τ_m は時定数である。ビームはうず電流によりなま った磁場を感じて動くが、うず電流の効果も次の 時定数 τ_e の1次遅れで近似する。

$$G_{e}(z) = \frac{1 - e^{-T_{s}/\tau_{e}}}{z - e^{-T_{s}/\tau_{e}}}$$
(5-2)

図の"disturbance U"が四極磁石の振動によるビーム位置に対する外乱である。D(z)はフィードバックプロセッサー内の遅延を表し、nd ステップの 遅延の場合、以下の様に書ける。

Table 5 速いフィードバックの解析に用いた パラメータ。

サンプリング時間(Ts)	$31.25 \mu s$
電源と磁石応答の時定数	0.14ms
(τ_m)	
チェンバうず電流応答の	0.23ms
時定数(te)	
コントローラ内遅延 nd	3サンプル
FIR フィルタ長 N	73

$$D(z) = z^{-nd} \tag{5-3}$$

M(z)はビーム位置検出器を表す FIR フィルタで あり、フィルタのインパルス応答 h(n)を使って以 下のように書ける。

$$M(z) = \sum_{k=0}^{N-1} h(k) z^{-k}$$
(5-4)

C(z)は以下の PI コントローラを表す。計算によると、比例制御のみでは 6dB 程度の振幅減衰効果しか得られず、また、微分制御を加えても性能改善が見られなかったため、PI 制御を採用した。

$$C(z) = K_p \left(1 + \frac{K_i T_s}{z - 1} \right)$$
(5-5)

外乱 U(z)から出力 Y_o(z)までの伝達関数 H(z)は 以下のように書ける。

$$H(z) = \frac{Y_o(z)}{U(z)} = \frac{1}{1 + C(z)D(z)G_m(z)G_e(z)M(z)}$$
(5-6)

H(z)の周波数応答は、 $z = e^{-j2\pi fT_s}$ とおけば得られ る。Table 5 に計算に用いたパラメータを示す。 例として K_p=0.29295, K_i=1657.6 のときの計算例 を Fig. 22 の実線で示す。PID パラメータの決定 に は、MATLAB Control System Design の Robust response time 法を用いた。この方法での アルゴリズムはブラックボックスだが目標値入 力(Y_r)のステップ応答を最適化しているようであ る。図をみると 10Hz で約 20dB の振幅減衰ゲイ ンがあることがわかる。ゲインは周波数が上がる と減少し 100Hz 付近でほとんど 0 になる。また 200Hz 付近にピークが現れる。

D(z),G_m(z),G_e(z),M(z)をまとめて 1 つの遅延要 素

$$D(z) = z^{-n} \tag{5-7}$$

で置き換えた計算結果を Fig. 22 の破線で示す。 実線と破線はほとんど一致しており H(z)の周波 数特性は基本的にループ内遅延と PI コントロー ラで決まっていることがわかる。

この近似で周波数応答の解析を試みる。まず、 H(z)は、

$$H(z) = \frac{1}{1 + C(z)D(z)} = \frac{-z^{-1} + 1}{K_p (K_i T_s - 1) z^{-n-1} + K_p z^{-n} - z^{-1} + 1}$$
(5-8)

と書ける。

次に、周波数応答を求めるときに、 $z=e^{-j2\pi FT_s} \sim 1-j2\pi FT_s = 1-j\omega T_s, \omega = 2\pi F$ と近似 すれば、周波数応答は次のように書ける。

$$|H(\omega)| = \sqrt{\frac{T^2 \omega^4 + \omega^2}{T^2 \omega^4 + \left(1 + 2K_p + K_p^2 - 2TK_i K_p\right) \omega^2 + K_i^2 K_p^2}}, \quad T = nT_s$$
(5-9)

Fig. 22 外乱の振幅減衰特性(実線: K_p=0.29295, K_i=1657.6 のとき、破線:PI 要 素以外を遅延で置き換えたとき)。

Fig. 23 ループ内遅延を変えた時の外乱の振幅 減衰特性 (PI パラメータは固定)。二点鎖 線、破線、実線、一点鎖線の順に、遅延ステ ップ n=0,21,51,119 での計算結果)。

Fig. 24 ループ内遅延を変えた時の外乱の振幅 減衰特性(PIパラメータを最適化したとき)。 破線、実線、一点鎖線の順に、遅延ステップ n=21,51,119 での計算結果)。

K_p,K_iを一定にしたままで遅延を変えた結果を Fig. 23 に示す。図中で、二点鎖線、破線、実線、 一点鎖線の順に、n=0,21,51,119 での計算結果で ある。遅延を減らすとピークの周波数が低い方に ずれ、ピークも顕著になる。低い方の応答は遅延 0 の場合(二点鎖線)と変わらない(つまり、PI のパラメタで決まっている)。また、周波数が低い 領域で周波数特性が右上がりになる傾向は PI 制 御器の特性によることが分かる。PI パラメータを 各遅延の値で最適化した結果を Fig. 24 に示す。 図中で、破線、実線、一点鎖線の順に、n=21,51,119 での計算結果である。遅延が 0 のときは、 $K_p \rightarrow \infty$ のとき、 $|H| \rightarrow 0$ となり、また、指令値 Yrから出 カ Yoへの閉ループ伝達関数は1に近づく。また、 システムの安定条件(伝達関数の極の絶対値が1 以下)は $0 < K_i T_s < 2$ である。この条件をみたす限 り Kp を増やせばシステムの特性は理想値に近づ いていく。Fig. 24 より、ループ内遅延を減らし、 PI パラメータを最適化することで振幅減衰量(ゲ イン)が大きくかつピークの小さい特性を得るこ とができることが分かる。

現在のシステムでのループ内遅延をサンプル 数で表すと、コントローラ内遅延が3、電源・磁 石とチェンバうず電流での遅延が15、FIRでの遅 延が36である。チェンバなどのハードに変更を 加えずループ内遅延を減らすにはFIRの次数を 減らせば良い。Fig. 25に現在のFIR(次数73) と次数を13次まで減らしたFIRでの近似なしの 計算結果を示す。振幅減衰量が約10dB増加して いる。FIRの次数はカットオフ周波数を2kHzから10kHzにあげることで実現する。このとき、フ ィルタによるノイズ除去性能が落ちるので注意 が必要である。ノイズの周波数分布が一様ならこ の変更でSNRの大きな減少はないと見積もられ るが、ノイズの状況はビーム試験をしてみないと わからない。

6. 遅いフィードバックシステム

遅いフィードバックシステムは KEKB で開発 され、SuperKEKB でも使われている[7]。

Fig. 25 FIR のフィルタ長が 73 (実線) と 13 (点線)のときの外乱の振幅減衰特性。

制御量のカノニカルキックとカノニカル角を まとめてyと書きnステップ目の制御量について

$$\Delta y_n = y_n - y_{\text{target}}$$

とする。ここで y_n は n ステップ目のモニタ値、 y_{target} は目標値である。過去 N ケのデータから Δy_{n+1} を次式の線形予測(linear prediction)[16]で 求める。

$$\Delta y_{n+1} = \sum_{k=1}^{N} c_k \Delta y_{n-k+1}$$
 (6-1)

c_k は過去 **M** ケのデータから、次の最小二乗法で 求め、

$$\begin{pmatrix} \Delta y_{n-1} & \Delta y_{n-2} & \dots & \Delta y_{n-N} \\ \Delta y_{n-2} & \Delta y_{n-3} & \dots & \Delta y_{n-N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta y_{n-M} & \Delta y_{n-M-1} & \dots & \Delta y_{n-M-N+1} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} \Delta y_n \\ \Delta y_{n-1} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \Delta y_{n-N+1} \end{pmatrix}$$

$$(6-2)$$

IP での軌道が

$$y = G\left(y_n - \Delta y_{n+1}\right) \tag{6-3}$$

となるようステアリング磁石を励磁する。ここで G は調整用パラメータ("ゲイン")である。 SuperKEKB では、KEKB と同様に、経験的に N=6, M=48 が用いられている。また、ckの決定は フィードバックの各サイクル毎に行われる。フィ ードバックの繰り返し周期は秒のオーダーであ る。

7. ビーム運転

現在は、垂直方向衝突点ベータ関数が 2mm な ので、垂直方向ビームサイズは約 200nm と大き く、また衝突点のビーム振動もビームサイズに比 べて小さいので、遅いフィードバックのみが運用 されている。速いフィードバックについてはビー ム試験を進めている段階である。

7.1. ビーム・ビームスキャン

軌道フィードバックのバンプの初期値は、衝突 点での垂直軌道を変えていったときのルミノシ ティを測定しルミノシティが最大になるような 値に設定する。この操作をビーム・ビームスキャ ンと称している。Fig. 26 にビーム・ビームスキャ ンの例を示す[20]。上図は衝突点で陽電子ビーム が電子ビームから受けるキックに比例する量で、 下図はルミノシティである。このスキャンにより 両リングのビームサイズで畳み込まれたビーム サイズを見積もることができる。ビーム・ビーム キックはビーム間距離が0のとき0になり、約± $\sigma*_y$ の範囲でビーム間距離に対して線形である。

7.2. 遅いフィードバック

現在は、カノニカルキックのフィードバックの みが運用されている。フィードバックの繰り返し 周期は2秒である。Fig. 27 に運転の様子を示す [20]。衝突を維持するようにバンプ軌道の高さを 調整してルミノシティを一定に保っていること がわかる。

Fig. 26 ビーム・ビームスキャンの例[20]。

Fig. 27 遅いフィードバックの運転例[20]。

7.3. 速いフィードバックのビーム試験

Table 6 に試験時のビームパラメータを示す。 試験ではカノニカルキックに対するフィードバ ックを PI 制御で行った。Fig. 28, 29 にフィーバ ックがオフのときとオンのときのカノニカルキ ックの周波数スペクトルを示す。フィードバック を入れると、約 70Hz 以下で振動が抑制されてい ることが分かる。減衰量は 10Hz の点で約 20dB である。230, 690, 1150Hz にピークが現れており、 230Hz のピークが最も大きい。690, 1150Hz のピ ークは、230Hz ピークの 3 次および 5 次の高調波 になっているので 230Hz ピークの非線形振動で 生じている可能性がある。フィーバックをオンし たときルミノシティの減少がみられたが、230Hz でのビーム励振によるものと考えられる。比例ゲ インを下げると、230Hz 以上のピークは低くな

Fig. 28 速いフィードバックをオフにしたときの カノニカルキックのスペクトル。

Table 6	速いフ	ィー	ドバッ	ク言	式験問	身のと	<u>~</u> _1	5
		パラ	メータ	t				

	LER	HER	
ビーム電流	250	250	mA
バンチ数	789	789	
バンチ電流	0.32	0.32	mA
衝突点ベータ関数	80/2	80/2	mm
(H/V)			
水平エミッタンス	1.6	4.5	nm
垂直エミッタンス	~10	~10	pm
(非衝突時)			
バンチ長	5	5.5	mm

り、ルミノシティの減少も起きなくなったが、 20Hz 以上での振幅減衰量は減少した。

Fig. 30 に試験時の PI パラメータを用いたシミ ュレーション結果を示す(横軸はリニアスケー ル)。10Hz での振幅減衰は 20dB であり実測と合 っている。また、250Hz に実測の 230Hz ピーク に近いピークが見られる。

230Hz 以上での振動は、6 節での議論からわか るように、PI 制御のパラメータが最適化されてい なかったためと推測される。次回のビーム試験で は BPM 回路の FIR フィルタの次数を減らして振

Fig. 29 速いフィードバックをオンにしたときの カノニカルキックのスペクトル。

Fig. 30 ビーム試験条件での外乱の振幅減衰特 性。

幅減衰量を増やした上で PI 制御パラメータを最 適化し、100Hz 以上のピークを抑えることを試み る予定である。

8. 終わりに

ビーム衝突を維持するための軌道フィードバ ックシステムについて、SuperKEKBで初めて導 入された速いフィードバックシステムを中心に 解説した。

速いフィードバックシステムの調整はまだ始 まったばかりである。リングでは軌道を変える 様々なシステムが稼働している。例えば、閉軌道 を基準値に維持するフィードバックが数十秒の 周期で働いている。また、ディザリングシステム も運用されるであろう。これらのシステムと共存 して速いフィードバックが安定に働くことは自 明ではない。運用上のさまざまな調整が必要と思 われる。

参考文献

- [1] T. Oki, "Collision feedback", the 19th KEKB Accelerator Review Committee (2014).
- [2] K. Ohmi and D. Zhou, "Beam Dynamics Issue in Nano Beam Scheme", the 16th KEKB Accelerator Review Committee(2011).
- [3] Y. Funakoshi, "Orbit control at IP", the 17th KEKB Accelerator Review Committee (2012).

- [4] 山岡広、"技術研修会「シミュレーション技術」
 SuperKEKB 最終収束用超伝導電磁石システム (QCS)の設計とシミュレーション手法"、
 「加速器」Vol. 16, No. 2, 2019, 87-95。
- [5] P. Raimondi, "Status on SuperB effort", 2nd LNF Workshop on SuperB, 16-18 Mar. 2006. http://www.lnf.infn.it/conference/superb06/talks/r aimondi1.ppt
- [6] D.N. Shatilov and M. Zobov, "Beam-Beam Collisions with an Arbitrary Crossing Angle: Analytical tune shifts, tracking algorithm without Lorentz boost, Crab-Crossing", Beam Dynamics Newsletter No. 37, p.99-109(2005). 大西幸喜、" SuperKEKB フェーズ 2 コミッショニング"、 高エネルギーニュース 37-3 139(2018)。
- [7] Y. Funakoshi et al., "Orbit feedback system for maintaining an optimum beam collision", Phys. Rev. ST-AB 10, 101001 (2007).
- [8] M. Tobiyama et al., "DEVELOPMENT OF BUTTON ELECTRODES FOR SUPERKEKB RINGS", Proceedings of BIW10, Santa Fe, New Mexico, US, p.223-227(2010).
- [9] 平松成範、"加速器のビームモニタ"、KEK Internal 2004-1。
- [10] 石井仁、森健児、私信。
- [11] H. Ishii et al., "DEVELOPMENT OF A BEAM POSITION DETECTOR FOR AN ORBIT FEEDBACK SYSTEM IN SuperKEKB", Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan (August 1-3, 2011, Tsukuba, Japan), pp.511-515(2011).
- [12] https://japan.xilinx.com
- [13] M. Ryoshi et al., "LLRF BOARD IN MICRO-TCA PLATFORM", Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan (August 4-6, 2010, Himeji, Japan), p.667-669(2010).
- [14] EUGENE B. HOGENAUER, "An Economical Class of Digital Filters for Decimation and Interpolation", IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29, NO. 2, APRIL 1981 155.
- [15] 高橋進一、池原雅章、" ディジタルフィルタ"、 培風館。
- [16] A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Pearson Education Inc..
- [17] https://jp.mathworks.com
- [18] K. Hayashi et al., "MICRO TCA INTER-BOARD DATA COMMUNICATIONS APPLIED

TO BPM AND LLRF SYSTEMS", Proceedings of the 10th Annual Meeting of Particle Accelerator Society of Japan (August 3-5, 2013, Nagoya, Japan), p.1164-1167(2013).

- [19] M. Ryoshi et al., "MTCA.4 FPGA(ZYNQ) BOARD", Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, August 9-11, 2014, Aomori, Japan, pp.1303-1307(2014).
- [20] SuperKEKB 運転ログより。

付録

1.デシベル

デシベル(dB)は信号レベルをある基準レベル を基準にして表した量で、信号パワーによって以 下のように定義される。

$$dB = 10\log_{10}\left(\frac{P}{P_0}\right)$$

ここで、P₀が基準となるパワーレベルである。信 号振幅Aはパワーの平方根だからdBを信号振幅 で定義すると、

$$dB = 20\log_{10}\left(\frac{A}{A_0}\right)$$

となる。また、1mW のパワーを基準にしたパワ ーを dBm と表し、

$$dBm = 10\log_{10}\left(\frac{P[W]}{0.001[W]}\right)$$

と定義される。

2.BPM の分解能

BPM 電極 1,2,3,4 が半径 R のチェンバに水平 面から測って 45,135,225,315 度についていると する。BPM で測定した垂直方向ビーム位置 y は、 4 つの電極での電圧 V₁,V₂,V₃,V₄ から以下のよう に書ける[9]。

$$y = K \frac{V_1 + V_2 - V_3 - V_4}{V_1 + V_2 + V_3 + V_4} \equiv KU$$

ここで、 $K = R / \sqrt{2}$ である。各電極に v_1, v_2, v_3, v_4 のノイズがあるとすると、

$$y = K \frac{(V_1 + v_1) + (V_2 + v_2) - (V_3 + v_3) - (V_4 + v_4)}{(V_1 + v_1) + (V_2 + v_2) + (V_3 + v_3) + (V_4 + v_4)}$$

$$\sim KU \left(1 + \frac{v_1 + v_2 - v_3 - v_4}{V_1 + V_2 - V_3 - V_4} - \frac{v_1 + v_2 + v_3 + v_4}{V_1 + V_2 + V_3 + V_4} \right)$$

$$\sim KU - \frac{K}{V_0} \left((U - 1)(v_1 + v_2) + (U + 1)(v_3 + v_4) \right)$$

と近似できる。ここで、 $V_0 = V_1 + V_2 + V_3 + V_4$ であり、 v と V の比の一次の項のみをとった。 $\overline{v}_1 = \overline{v}_2 = \overline{v}_3 = \overline{v}_4 = 0$ より、 $\overline{y} = KU$ (バーは平均 の意。) なので、

$$\overline{(y-\overline{y})^2} = 4K^2(1+U^2)\frac{\overline{v^2}}{V_0^2}$$

となる。ここで、 $\overline{v_1^2} = \overline{v_2^2} = \overline{v_3^2} = \overline{v_4^2} = \overline{v^2}$ とおき、 $\overline{v_i v_j} = 0$ for i ≠ jの関係を使った。y の分解能oy は、U<<1 のとき、以下のようになる。

$$\sigma_{y} = \sqrt{\overline{(y-\overline{y})^{2}}} \sim \frac{1}{2}K\frac{\sqrt{\overline{y^{2}}}}{\overline{V}} = \frac{1}{2}K\frac{1}{SNR}$$

ここで、 $\overline{V} = (V_1 + V_2 + V_3 + V_4)/4$ であり、 SNR = $\overline{V}/\sqrt{v^2}$ である。水平方向の分解能も同様にして求まる。

3.z 変換

1)定義

離散時間信号 x[n]の z 変換は z を複素数として 以下のように定義される[15,16]。

$$X(z) = Z[x[n]] = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

逆変換は、 $Z^{-1}[X(z)] = x[n]$ となり、X(z)を z^{-1} の 多項式で展開した時の係数である。

2)z 変換の性質a)線型性

$$Z[ax[n]+by[n]] = aX(z)+bY(z)$$

b)時間シフト

$$Z[x[n-k]] = z^{-k}X(z)$$

c)時間反転

$$Z[x[-n]] = X(z^{-1})$$

d)畳み込み

二つの信号**x**₁[**n**],**x**₂[**n**]の畳み込みは次式で定義 される。

$$x[n] = \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]$$

このとき次の関係が成り立つ。

$$X(z) = X_1(z)X_2(z)$$

3)システム関数(伝達関数)

線形時不変システムへの入力を x[n],出力を y[n]とする。インパルスδ[n]=[1,0,0,0...]がシステ ムへ入力したときの出力を h[n]とすると、次の畳 み込みの関係がある。

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k], \ h[k] = 0 \ (k < 0)$$

このz変換は、

Y(z) = H(z)X(z)

となり、h[n]の z 変換 H(z)をシステム関数あるい は伝達関数という。

4)フーリエ変換離散時間信号 x[n]のフーリエ変換は、次式で定義される。

$$X_F(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

ここで、ωは正規化角周波数と呼ばれ、F を周波 数、Fs をサンプリング周波数とすると、

$$\omega = 2\pi \frac{F}{F_{c}}$$

である。z変換の定義と比較すると、z変換がX(z)の離散信号のフーリエ変換は、

$$X_F(\boldsymbol{\omega}) = X(e^{j\boldsymbol{\omega}})$$

で与えられる。

4.デシメータの等価変換

サンプリング周波数を整数 R で減少させるこ とをデシメーションといい、デシメーションを行 う要素(Fig. A-1 の下矢印の付いたブロック)を デシメータという。まず、デシメータの z 変換を 求める。デシメータの入出力関係は次のように書 ける、

$$y(m) = x(Rm)_{\circ}$$

次の x_a(n)を考えると(Fig. A-1 参照。)、

$$x_{a}(n) = \begin{cases} x(n) \text{ for } n = Rp, \text{ p:integer} \\ 0 \text{ otherwise} \end{cases}$$
$$= x(n) \frac{1}{R} \sum_{k=0}^{R-1} e^{j2\pi kn/R}$$

y(n)の z 変換は以下のように書ける。

$$Y(z) = \sum_{m=-\infty}^{\infty} x(Rm) z^{-m} = \sum_{n=-\infty}^{\infty} x_a(n) z^{-n/R}$$

=
$$\sum_{n=-\infty}^{\infty} \left[x(n) \frac{1}{R} \sum_{k=0}^{R-1} e^{j2\pi kn/R} \right] z^{-n/R}$$

=
$$\frac{1}{R} \sum_{k=0}^{R-1} \left[\sum_{n=-\infty}^{\infty} x(n) \left(e^{-j2\pi k/R} z^{1/R} \right)^{-n} \right] \quad (A. 4-1)$$

=
$$\frac{1}{R} \sum_{k=0}^{R-1} X \left(e^{-j2\pi k/R} z^{1/R} \right)$$

次に、Fig. A-2 の(a)と(b)が等価であることを示 す。まず、(b)の左のブロックの入出力関係は、

Fig. A-1 デシメータの z 変換。

Fig. A-2 デシメータの等価変換[15]。

$$X_2(z) = G(z^R) X(z)$$

と書ける。(A.4-1)式を使うと、

$$\begin{split} Y_{2}(z) &= \frac{1}{R} \sum_{k=0}^{R-1} X_{2} \left(e^{-j2\pi k/R} z^{1/R} \right) \\ &= \frac{1}{R} \sum_{k=0}^{R-1} G \left(e^{-j2\pi k} z \right) X \left(e^{-j2\pi k/R} z^{1/R} \right) \\ &= G(z) \frac{1}{R} \sum_{k=0}^{R-1} X \left(e^{-j2\pi k/R} z^{1/R} \right) \\ &= G(z) X_{1}(z) = Y_{1}(z) \end{split}$$

となり、(a)と(b)の等価関係が証明された[15,16]。

5.FIR の位相特性

タイプ1 (フィルタ長Nが奇数、インパルス応 答が偶対称)の FIR を考える[15]。周波数応答は、

となる。ここで、ωは正規化角周波数、h(n)はイン パルス応答である。大括弧内は実数なので、位相 特性は、

$$\theta(\omega) = \left(\frac{N-1}{2}\right)\omega_{\circ}$$

6.ホールド要素のラプラス変換

ホールド要素へ振幅1のパルス $x(t)=\delta(t)$ が入力 したとき、出力 y(t)は次のパルスが来るまでの時 間 T だけホールドされるから、ステップ関数 u(t)を使って、

$$y(t) = u(t) - u(t - T)_{\circ}$$

$$L[\delta(t)] = \int_{0}^{\infty} \delta(t) e^{-st} dt = 1,$$

$$L[u(t-kT)] = \int_{kT}^{\infty} e^{-st} dt = e^{-skT} / s$$

より、

$$L[x(t)] = 1$$
$$L[y(t)] = \frac{1}{s} - \frac{e^{-sT}}{s} = \frac{1 - e^{-sT}}{s} \cdot \frac{1 - e^{-sT}}{$$

よって、ホールド要素のラプラス変換は、 $(1-e^{-sT})/s$ である。