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LASER 
 

Light Amplification by Stimulated Emission of Radiation 

courtesy Dr. L. Corner, University of Liverpool 
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Lasers come in many different styles: 
 
• Temporal structure - continuous wave (cw) or pulsed (down to femtoseconds). 

 
• Wavelength - X-ray free electron lasers through visible to near infrared fibre 

and solid state systems, mid infrared quantum cascade lasers to 10.6mm CO2 
lasers. 
 

• Low power (barcode scanners, laser pointers). 
 

• High peak power (100s TW, PW systems available commercially). 
 

• Need to consider what it is required for your application. 
 

• Overspec – makes it very expensive! 

Laser types 
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•They have a "narrow" 
spectrum (bandwidth). 

•They are spatially and 
temporally coherent. 

•They produce highly 
directional beams. 

Laser properties 

Diagram courtesy Prof. S. Hooker, Oxford 



Laser applications in accelerator physics 

• Many applications of laser technology. 
 

• Broadly 2 categories: 
 

• Improving standard accelerators – diagnostics, timing, photocathodes. 
 

• Driving new accelerators – laser driven plasma accelerators, dielectric 
laser acceleration, direct laser acceleration in vacuum. 
 

• Laser-based particle sources  
• Laser-driven particle beam acceleration  
• Lasers for beam diagnostics  
• System integration  
• Laser and photon detector technology  
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Lasers for particle beam diagnostics 
 

• Electro-optic methods for bunch length measurement. 

• Coulomb field of the particle bunch alters the optical properties of the nonlinear crystal. 
• Changes polarisation state of laser propagating through crystal. 
• Laser is chirped so spectral features directly relate to time. 
• Particle bunch length measured single shot and non-destructively. 

See for example: 
• Pan et. al., MOPME077, IPAC 2013. 

courtesy Dr. L. Corner, University of Liverpool 
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Lasers for particle beam diagnostics 
• Laser based beam size measurement. 

• Measure electron beams (Compton scattering) - SLC, ATF2. 
• Also ion beams (photo-neutralisation) - H- laserwire at Linac 4, CERN. 

Laser system – choice of parameters Beam transport  

Particle beam – energy,  
temporal structure Beam separation and extraction  

Post – IP – diagnostics, energy, beam dumping 

Detection  

See for example: 
• Nevay et. al., Phys. Rev. ST Accel. Beams 17, 072802 (2014). 
• Kruchinin et. al., MOPWI003, IPAC 2015. 



高エネルギー加速器セミナーOHO’20 8 

Lasers for particle beam diagnostics 
• Measuring really small beam sizes 

• For < 1mm beams need something different – can’t focus laser spot to much less than 
this. 

• Cross 2 laser beams at large angle to make very narrow interference fringe pattern. 
• Scan interference fringes across beam and look for modulation in Compton signal. 
• This monitor is *really* hard to align and make work well. Requires very stable laser 

source. 
See for example: 
• White et. al., Phys. Rev. Letts. 112, 034802 (2014). 
• Yan et. al., 261, TIPP 2014. 
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ATF2 laser-wire 

• ATF2 major international collaboration – scaled test of ILC optics. 
• Aim – electron beam size < 40nm. 
• Major test of new diagnostics – high resolution (< 5nm) bpms, fast feedback etc. 
• Laser-wire designed for highest resolution – measurement ~ 1mm. 
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ATF2 laser system 

Seed laser @ 357MHz locked to  
sub-multiple of accelerator frequency  

Seed pulse injected into Nd:YAG   
flashlamp pumped regenerative  
amplifier – 1.56Hz, 200ps, 10mJ 

Linear amps up to 500mJ  SHG – 532nm, 100mJ 

Image courtesy Dr. L. Nevay, RHUL  
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Detection 
Dipole magnet separates  

electrons and photons 
Photons extracted through 1mm Al window 

Detector placed next to window 

Cherenkov detector – g converted to e-/e+ pairs in lead, generate Cherenkov  
radiation in aerogel, guided to PMT below beam line. 

Photo courtesy Dr. L. Nevay, RHUL 
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Results and analysis 

Electron beam aspect ratio very large – cannot assume laser same size across particle 
beam. 
 
Try to model laser propagation and solve full overlap integral for particle and laser 
beam 
distributions – complex analysis because of electron beam size and laser properties – 
not  
just simple adding of beam sizes in quadrature. 

e- ~ few mm 

~ few 100 mm 

laser scan 

See Nevay et al., PR STAB 17, 072802 (2014) 
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Preliminary scans and analysis 

Vertical scan – sey = 1.09 ± 0.22 mm 

Horizontal scan –  
sex = 236.9 ± 2.98mm 

Demonstrated 1mm beam size 
measurement – scan ~ 2 min. 

Data: L. Nevay, A. Aryshev, L. Corner 
Analysis: L. Nevay 
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Timing and synchronisation in particle accelerators 

• Modern large accelerators and free electron laser complexes need timing 
synchronisation for components such as beam, diagnostics, data acquisition at the 
fs           level or even < fs. 
 

• Fibre based distribution of signals derived from mode-locked pulsed lasers are 
now in use or planned at several facilities worldwide. 
 

• As well as distributing a signal ‘clock’ need to be able to measure jitter and correct 
for it. 
 

• Measurements of jitter between mode locked lasers using optical techniques has 
shown < 100 fs as jitter measurement. 
 

See for example: 
• Peng et. al., Optics Letters 21, 19982 (2013) 
• https://desy.cfel.de/ultrafast_optics_and__x_rays_division/research/timing_distribution_and_synchronization/ 
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Lasers driving accelerators – plasma wakefield accelerators 

– Conventional accelerators are widely used in science and medicine. 

• Acceleration gradient limited by electrical breakdown to < 100 MV/m. 

• This sets the size (& cost) of the machine. 

Diamond, UK LHC 
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– Ponderomotive force of an intense laser 
pulse expels electrons from the region of 
the pulse to form a trailing plasma 
wakefield. 

– The wakefield moves at speed of laser 
pulse (i.e. close to speed of light). 

– Electric fields within wakefield can 
accelerate charged particles. 

– Huge accelerating gradients – 1000 x 
conventional accelerators. 

– 4 GeV in 9cm. 

– 3.25 GeV in 14mm. 

– Massive potential for reducing size and 
cost of particle accelerators. 

Plasma accelerators – how they work 

See for example: 
• Esarey et. al., Rev. Mod. Phys  81 1229 (2009) 
• Kim et. al., Phys. Rev. Letts. 111 165002 (2013) 

Diagram courtesy Prof. S. Hooker, Oxford 
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Laser plasma accelerators - What’s the catch? 

• Sounds great – why aren’t all accelerators plasma based? 
 

• Mainly driver problems – lasers required are 100s TW or PW, inefficient so heat 
up, only fire once an hour/every 20 mins. 
 

• Even fastest PW laser in the world only fires at 1Hz – too slow for real 
applications. 
 

• Also length of accelerator – only over ~ 10cm so far, need to show that many 
stages can be put together to get to really high energy. 
 

• Quality of electron bunches not as good as conventional accelerators yet. 
 

• These are all active areas of research. 
 

• Not forgetting laser driven proton and ion acceleration, and positron acceleration. 

courtesy Dr. L. Corner, University of Liverpool 
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Slide courtesy Dr. P. Hommelhoff, Friedrich-Alexander-Universitat, Erlangen 

Dielectric laser accelerators  
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Dielectric laser accelerators  

• New area of accelerator research. 
 

• Have shown acceleration of relativistic and non-relativistic electrons using laser 
and dielectric structures. 
 

• Also beam manipulation e.g. deflection for use as beam position monitor.  

See for example: 
• Breuer et. al., Phys. Rev. ST Accel. Beams 17 021301 (2014) 
• Peralta et. al., Nature 503 91 (2014) 

https://www.liv.ac.uk/quasar/research/novel_accelerators/ 
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Direct laser acceleration in vacuum 

• Light has a strong electric field – can we use this to accelerate electrons? 
• How to get large on axis component? Focus radially polarised light beam.  
• Vacuum acceleration – no medium to breakdown, not unstable. 
• Carbajo et. al. Phys Rev. ST Accel. Beams 19, 021303 (2016) shown 3GeV/m – 

exciting result! 

arXiv:1501.05101 

courtesy Dr. L. Corner, University of Liverpool 
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Lasers as particle sources  - Photocathodes 

• Can use laser pulses to produce electron bunches from photocathodes.  
• Give bunches as short as the laser pulse without additional manipulation. 
• Properties of the bunch can be controlled by the laser pulse shape in time and 

space. 
• Laser must be stable and locked to RF for further acceleration. 
• Light needed at energies > photocathode workfunction, generally UV. 
• Laser needs second or third harmonic frequency conversion due to PC Q.E. 
• Large area of laser research – need: 

See for example: 
• Penco et. al., Phys. Rev. Letts. 112 044801 (2014) 
• Schreiber et. al., NIM A 445 (2000). 

• High pulse energy 
• Reliable running 
• Excellent pointing stability 
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Making a laser 

• All laser oscillators (as opposed to amplifiers) have 3 parts: 
 

• Gain medium – gas, solid state, liquid – what provides the lasing transition. 
 

• Pump – source of energy to create population inversion – usually another light  
source e.g. flashlamp or another laser, can be electrical discharge or current. 

 
• Cavity – need to recirculate photons to stimulate emission on lasing transition – 
often mirrors around gain medium, can be medium itself. 

 
• Lasing threshold – when gain (no. photons emitted in round trip) exceeds loss 
(number lost to absorption, through mirrors etc.). 

 
• And that’s it! 

courtesy Dr. L. Corner, University of Liverpool 



Typical laser pulse parameter 
requirements for RF gun photocathode 
• Pulse energy, > 10uJ for Cs2Te 
• Pulse duration, ~ 100fs – 10ps 

– Space-charge limited 

• Wavelength, ~ 250nm for Cs2Te 
– Hence, High Harmonic Generation is needed 
– Conversion efficiency depends on pulse duration and harmonic  

• Pulse repetition rate 
– Hz (machine), MHz (multi-bunch), GHz-THz (micro-bunch) 

• Timing stability, < 1ps (~1 deg. RF phase (2.8GHz)) 
– Stabilized and synchronized oscillator 
– Stabilized Laser Transport Line 

• Pointing stability, smaller than rms spot size, typ < 100um. 
– Stabilized Laser Transport Line 
– Additional spatial filters 

• Spatial and temporal pulse shaping 
– Pulse stacking 
– Micro-lens arrays 
– -shapers 

 10 September 2020 高エネルギー加速器セミナーOHO’20 23 



Typical technology (effectively dopants) 
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Nd:YAG 

Ion Common host crystals Important emission wavelengths 

neodymium(Nd
3+

) Y3Al5O12 (YAG), YAlO3 (YALO), YVO4 (yttrium vanadate), YLiF4 (YLF), tungstates (KGd(WO4)2, KY(WO4)2) 1064, 1047, 1053, 1342, 946 nm 

ytterbium(Yb
3+

) YAG, tungstates (e.g. KGW, KYW, KLuW), YVO4, borates (BOYS, GdCOB), apatites (SYS), sesquioxides (Y2O3, 
Sc2O3) 

1030, 1020–1070 nm 

erbium (Er
3+

) YAG, YLF 2.9, 1.6 μm 

thulium (Tm
3+

) YAG 1.9–2.1 μm 

holmium (Ho
3+

) YAG 2.1, 2.94 μm 

cerium (Ce
3+

) YLF, LiCAF, LiLuF, LiSAF, and similar fluorides 0.28–0.33 μm 

Ion Common host crystals Important emission wavelengths 

titanium (Ti
3+

) sapphire 650–1100 nm 

chromium (II) (Cr
2+

) zinc chalcogenides such as ZnS, ZnSe, and ZnSxSe1−x 2–3.4 μm 

chromium (III) (Cr
3+

) Al2O3 (ruby), LiSrAlF6 (LiSAF), LiCaAlF6 (LiCAF), LiSrGaF6 (LiSGAF) 0.8–0.9 μm 

chromium (IV) (Cr
4+

) YAG, MgSiO4 (forsterite) 1.35–1.65 μm (YAG), 1.1–1.37 μm 
(forsterite) 

https://www.rp-photonics.com/neodymium_doped_gain_media.html
https://www.rp-photonics.com/yag_lasers.html
https://www.rp-photonics.com/vanadate_lasers.html
https://www.rp-photonics.com/ylf_lasers.html
https://www.rp-photonics.com/tungstate_lasers.html
https://www.rp-photonics.com/ytterbium_doped_gain_media.html
https://www.rp-photonics.com/yag_lasers.html
https://www.rp-photonics.com/tungstate_lasers.html
https://www.rp-photonics.com/vanadate_lasers.html
https://www.rp-photonics.com/vanadate_lasers.html
https://www.rp-photonics.com/erbium_doped_gain_media.html
https://www.rp-photonics.com/titanium_sapphire_lasers.html
https://www.rp-photonics.com/chromium_doped_gain_media.html
https://www.rp-photonics.com/chromium_doped_gain_media.html
https://www.rp-photonics.com/chromium_doped_gain_media.html
https://www.rp-photonics.com/yag_lasers.html


RF Gun laser system technologies 
Solid-state-based technology Fiber-based technology 
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Ti:Sa 

Yb-dopped fiber for example 

courtesy Y. Honda 

A. Chong, W.H. Renninger, F. W. Wise, Opt. 
Lett. 33 (2008) 2638: 

Numerical simulations of Yb-doped fiber 
lasers indicate that ~30 fs pulses are 
possible for a realistic design with off-
the-shelf components. Experiments are 
constrained by the available pump 
power, but ~75 fs pulses are obtained. 
(just for oscillator !!!) 

Er-doped fiber laser is also promising candidate 

Nd:YAG 

Hz rep.rate 
fs pulse 
High Energy 
Complexity 

Hz rep.rate 
ps pulse 
High Energy 
Simplisity 

MHz rep.rate 
~100 fs pulse 
Low Energy 
Simplisity 



What is so Special About ps-fs Lasers? 

Short optical pulse. 
• Most of energy dissipation and 

transfer processes occur on the 
time scale larger than 100 fs. 

• Femtosecond laser pulses enable 
one to generate electron bunches 
with similar durations (strongly 
related to generation of THz 
radiation). 

• Specific laser system design 
approaches. 

• Specific gain materials due to 
optical BW and efficiency with fs 
pulses. 

• Specific pulse diagnostics. 

High peak power of the light 
• Peak Power = P. energy / P. duration 

– 1 mJ pulse with 10 ns duration - 0.1 MW. 
– 1 mJ pulse with 100 fs duration - 10 GW. 

• Non-linear response of the optical 
components(e.g., multi-photon 
absorption, optical harmonics 
generation, materials ablation, etc.) 

Large bandwidth 
• Broadband optical components 

(mirrors, etc) 
• Achromatic lens, waveplates, etc. 
• Higher demands for laser safety. 
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W. Kaiser, ed., “Ultrashort Laser Pulses: Generation and Applications”, Springer-Verlag, Berlin, 1993 



Amplification of fs Pulses 

Oscillator Stretcher Amplifier Compressor 

Chirped pulse amplification concept 
• Generate a stable (and locked to Acc. RF) sequence of fs pulses (Oscillator)  
• Stretch femtosecond pulse to picoseconds level ( > 100 times) 
• Pulse pickers, mode cleaners, etc 
• Pre-amplify (typically RGA for Solid-state lasers) 
• Amplify 
• Recompress amplified pulse 
• Generate Harmonics  
• Deliver laser pulses to the photocathode 

• With additional spatial corrections and diagnostics 

Same approach works for fiber lasers with the only difference in available components. 
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Time-Frequency Relationship 
• A pulse can be defined as a transient in a constant background. The shape of this 

pulse is the shape of this transient. Intuitively, the pulse shape can be 
represented by a Gaussian function. It is known that the Fourier transform of a 
Gaussian function is also a Gaussian function. The general time and frequency 
Fourier transforms of a pulse can be written as: 
 

 
• The relationship between the duration and spectral             

bandwidth of the laser pulse can be written as: 
 

• where  is the frequency bandwidth measured at         
full-width at half-maximum (FWHM) with  = 2         
and t is the FWHM in time of the pulse and K is a                  
number which depends only on the pulse shape. 
 

• Thus in order to generate a laser pulse within femtosecond time domain one 
needs to use a broad spectral bandwidth. If the above equality is reached, one 
speaks about a Fourier-transform-limited pulse or simply a transform-limited 
pulse. One can also calculate the minimum time duration t of a pulse giving a 
spectrum with  (nm) at FWHM, central wavelength 0 (nm) and the speed of 
light (m/s) c as: 
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Consider it as a homework -> 



Time-Frequency Relationship 
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  Basic principles of ultrafast lasers 

Components of ultrafast laser system  

Pump 

HR Gain OC 

Mode-locking 
 

Mechanism 

Dispersion 

Compensation 

Cavity modes 

n = 2 L/n   f = c/2 L  

n – positive integer frequency separation between adjacent modes  10 September 2020 高エネルギー加速器セミナーOHO’20 30 



Mode-locking 
• Ignition 

– Dispersive pulse compression – 
external starting mechanism. 

– Instantaneous increase in net gain 
(Kerr lens) upon application of 
perturbation (mirror wobbling, truly 
self-starting). 

• Passive mode-locking 
– Semiconductor Saturable Absorber 

Mirrors (SESAM), ps pulses 
– Kerr lens 
– Nonlinear polarization rotation(NLPR) 
– Q-switched Mode Locking, effectively 

instability. 

• Active mode-locking 
– Periodic modulation of the resonator 

losses or of the round-trip phase 
change, achieved e.g. with an acousto-
optic or electro-optic modulator, a 
Mach–Zehnder integrated-optic 
modulator, or a semiconductor 
electro-absorption modulator. 
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Ti:Sa  
Oscillator 
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Fiber Oscillator 
• Nonlinear polarization rotation(NLPR)： 

– A power-dependent polarization change is converted into a 
power-dependent transmission through a polarizer. NLPR 
converts the differential phase shift to amplitude modulation. 
• stable soliton 
• stretched-pulse 
• self-similar 
• all-normal-dispersion pulse 

• Solitons are caused by a cancellation of nonlinearity and 
dispersion. 

• For stable soliton fiber lasers the energy of a single pulse 
is limited by the nonlinear phase shift induced by the 
high peak power. The pulse will break into multiple 
pulses when the energy rises to 0.1 nJ.  

• Analog to dispersion-managed soliton, an alteration of 
positive and negative dispersion part inside a laser cavity.  

• Produce highly desirable Gaussian pulse shapes and 
broad pulse spectra. 
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Andy Chong, “All-normal-dispersion femtosecond  
Fiber laser”,   Vol. 14, No. 21 / OPTICS EXPRESS  
10095, 2006 

Reflective 
gratings 

PBS

EM

DM
LD1




WDM1

Yb-fiber 1



MT

PZT

Cp1

Cp2

Is2

Is1

G2-MT

G1 G2

SMF: Single-mode fiber 
NPE: Nonlinear polarization evolution 



Stability 
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95 MHz, 20ns/div 

112 MHz, 10ns/div 

95 MHz, 5us/div 

95 MHz, 20ms/div 

10 September 2020 



Rep.rate and BW 
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129 MHz, 10ns/div 

Output power was 110mW, rms stability 0.25% 

Contrast: 37mV/377mV = 0.098 

10 September 2020 



Spectral width 
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Absorption Emission 

Further tuning should be applied to flatten 
peaks of emitted spectrum 
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Oscillator performance with small 
dielectric end-mirror 

37 

~ 135mW, 0.2% rms stability 
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Oscillator performance with small 
dielectric end-mirror 
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Dispersion and Group velocity 
• Dispersion in Optics: The dependence of the refractive index on wavelength has 

two effects on a pulse, one in space and the other in time. 
• “Chirp” d2n/d2 and “Angular dispersion” dn/d 
• Both of these effects play major roles in ultrafast optics. 
• Dispersion disperses a pulse in space (angle): 
• Dispersion also disperses a pulse in time: 
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• v = c / n – speed of light in 

a medium 

• n –depends on wavelength, 

  dn/d < 0 – normal dispersion 

Group Velocity Dispersion (GVD) 

• Because of GVD, red components (longer 
wavelengths) of the pulse propagate faster than 
blue components (shorter wavelengths) leading 
to pulse stretching (aka “chirp”). 

• GVD can be compensated by material with 
abnormal dispersion. 

10 September 2020 



Group-Velocity Dispersion 
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The effect of group velocity dispersion 
• GVD means that the group velocity will be different for different 

wavelengths in the pulse. 
• Because ultrashort pulses have such large bandwidths, GVD is a bigger issue 

than for cw light. 



10 September 2020 高エネルギー加速器セミナーOHO’20 41 



Stretcher and Compressor 
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“Aberration-free stretcher design for ultra-short pulse amplification” G. Cheriaux, F. Salin and 
al. OPTICS LETTERS March 15 1996 



Pre-amplifier. RGA 
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Amplifier 
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Ti:Sa Laser system: general layout 
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Oscillator 

Stretcher 

Compressor 

RGA 

Autocorrelator 

10 September 2020 
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Harmonics 
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Frequency tripling is a process of a nonlinear frequency conversion. 

frequency  
doubler 

sum frequency  
mixer 

BBO, Type1 
 = 29.2deg 
~ 90deg 
L= 0.2mm 

Calcite 
= 45deg 
L= 1.7mm 

Achromatic 
Half-wave plate 
~ 90deg 
L= 2mm 

BBO, Type1 
 = 44.3deg 
~ 90deg 
L= 0.05mm • C. Radzewicz, Optics communications 117 (1995) 295-302. 

• Lixin YAN, Preliminary Experiments on Ultrashort Bunch 
Train Production by UV Pulse Stacking, Tsinghua University 

SHG GVD 𝞴/2 THG 
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Multi-micro-bunch, concept 
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3.13 Hz 

RF, 2856 MHz 

3.13 Hz 

RF, 2856 MHz 

4 micro-bunches 
1 multi-bunch (1 RF bucket) 

4 micro-bunches 
4 multi-bunch (4 RF buckets) 

• Number of filled RF buckets depends only 
on FH laser energy budget 

• Non-sequential RF bucket filling is possible 

• DAQ sees this micro-train as a single event 
(no trigger modification is required) 

• Micro-bunch spacing changing 
simultaneously in all buckets 

RF bucket period ~350ps 

10 September 2020 



“Buncher”, second (current) prototype 
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General sheme of 16-buncher 
Photo of pre-assembled buncher 

 All bits were delivered in September 2014. 
 Assembled and tested (laser side only) in Nov.-Dec. 2014 
 Tested (e-beam generation) in Jan. – Feb. 2015 



FSTB: fs Single Shot cross-correlator 
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The method based on the 
registration of cross 
distribution of Second 
Harmonic (SH) energy 
produced in nonlinear 
crystal under non-
collinear interaction of 
two beams with 
determined aperture. 

SHG Crystal 

Camera 
A 

B C 

C 

A 

B 



Ti:Sa laser system (FSTB) 

51 10 September 2020 高エネルギー加速器セミナーOHO’20 

Operational parameters Original 4 

years 

later 

Repetition rate, max 10Hz 3.13Hz 

Central wavelength 795nm 795nm 

Pulse energy before compression 22mJ 5mJ 

Pulse energy after compression 14mJ 3mJ 

Pulse duration w/w-o correction 30/37.7fs 50fs 

Energy stability 22mJ@800nm 1.6% 3% 

• Entire infrastructure was built 

• Control soft 80% re-written 

• Additional pulse diagnostics introduced 

• THG simulated, ordered, built 

• 2 buncher systems were implemented 



Multi-micro-bunch, implementation 

52 

Present condition:  4x4 pulses, ~50 fs each, converted to 266nm, 10uJ  

• Total splitting efficiency ~20% 
• New design with total 10-20% loses is possible. 
• Beam expander was removed.  
• Multi-pass Amp, Compressor, THG, LTL re-tuned. 
• Micro-bunch 

– Separation: +/- 5 ps  
– Stability: < 20 fs (lower than meas. resolution) 

• Multi-bunch 
– Separation: 350ps +/- 30 ps 

 
 

Manual delay control Motorized delay control 
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Pre-amplifier, PCF and modified laser 
system diagram 
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Whole system (Osc. + Pre.amp) 
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Pre. Amp tests 
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Current(A) Out Put pump power (mW) 

6.3 24 

9 135 

12.2 300 

15 521 

17 752 

19.1 1050 

20.2 1230 
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Pre. Amp. tests 
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LUCX-FSTB-THz, 3D model  
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Nd:YAG Ti:Sa 

Modulator #0 



LUCX laser transport line (LTL) 
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FSTB table 

Box#2 

Box #1 

C
o

n
cr

et
e 

w
al

l 

Nd:YAG table 

Difficulties: 
1. Selecting either of two laser beams: Nd:YAG of Ti:Sa 
2. Separate focusing systems. 
3. Same FF and “virtual cathode” 
4. Relatively long optical path 
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Final Focus diagnostics 
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Conclusion 

• Lasers are a vital part of modern particle 
accelerators. 

• It is used as diagnostics, timing systems, sources of 
particles, drivers of new accelerators. 

• Research and development of new laser sources will 
drive improvements in: 

– Particle accelerators – smaller, cheaper, more efficient. 

– Particle temporal distribution (important for light sources 
– THz FELs, Compton, etc) 

– Particle beam diagnostics 
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Thank you very much! 
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