ビームダンプ

高エネルギー加速器研究機構 加速器研究施設 森川 祐 (yu.morikawa@kek.jp)

高エネルギー加速器セミナー OHO'21 (2021.9.7)

KEK加速器の技師です。 流れ弾に当たり講師になりました。 仕事:ILC dump, STF dump, cERL 標的, 教育加速器 dump, その他手伝い多数

Contents

1.ビームダンプの設計指針

- ・ビームダンプとは??
- ・熱負荷 電磁シャワーの特性
- 耐熱設計について
- 2. ILCメインビームダンプの設計

ILCのビームダンプ
メインビームダンプの耐熱設計
メインビームダンプの付帯施設

・メインビームダンプでの新粒子探査 ・アンジュレーター光子による医療用RI製造

ビームダンプの設計指針 ・ビームダンプとは ・熱負荷 - 電磁シャワーの特性 ・耐熱設計について

ビームダンプとは

ビームの終点 - ビームを吸収し止める装置

【いつ使うか?】

- ・加速器の異常検知時にビームを止める
- ・実験系で消費しきれないビームを止める
- ・リング型加速器での電流量調整時、などなど・・・

どんな加速器でも1基は必要

世界の大強度ビームダンプ

・ビームダンプで概ね熱に変わる

温度上昇 & 熱応力に耐える設計 ・高エネルギー光子・中性子の生成

放射線対応 (遮蔽体,残留放射線・・・) ・材料の放射線損傷

世界の大強度ビームダンプ

*建設中の物を含む

Laborato								
	W級ヒームタン	フが登り	易し始め	のている!!				
SLAC	Water Dump (at End-Station)	e & e+	2.2MW	ex. $20 \text{GeV} \times 110 \mu \text{A}$				
Jefferson Lab	Beam Dump (Hall A & B)	e	1MW	ex. 5GeV \times 200 μ A				
E-XFEL	Main Beam Dump	e	300kW	ex. $25 \text{GeV} \times 12 \mu \text{A}$				
KEK	SKEKB Beam Dump	$e^{-}\& e^{+}$	182kJ	$7 \text{GeV} imes 26 \mu \text{C}$				
CERN	HL-LHC Beam Dump	Proton	680MJ	$7 \mathrm{TeV} \times 97 \mathrm{\mu C}$				
J-PARC	Neutron Target	Proton	1MW	$3 \text{GeV} imes 333 \mu \text{A}$				
J-PARC	Neutrino-facility Beam Dump	Proton	$750 \mathrm{kW}$	$30 { m GeV} imes 25 \mu { m A}$				
ESS	Neutron Target	Proton	$5 \mathrm{MW}$	$2 { m GeV} imes 2.5 { m mA}$				
IFMIF LIPAc	Beam Dump (at Linac End)	Deuteron	1.125 MW	$9 \mathrm{MeV} imes 125 \mathrm{mA}$				
FRIB	Beam Dump	Heavy Ion	$325 \mathrm{kW}$	ex. 47.6GeV \times 6.83µA @U238 - 0.2GeV/u				

ビーム強度 (W)

エネルギー (eV) × 電荷 (A)

ビームダンプの開発

・設計段階では各種シミュレーションコードを駆使して妥当性を確認する。
 ビーム輸送 (SAD), 放射線や発熱分布 (PHITS, FLUKA, MARS), 温度・応力 (ANSYS, ...)

発熱分布 - 電磁シャワーの特性

電磁シャワー:下記プロセスを通して粒子が増殖 (a)制動放射による光子生成: e⁻ ⇒ e⁻ & γ (b)対生成による電子・陽電子生成:γ ⇒ e⁻ & e⁺

制動放射と電離によりエネルギーを損失

電磁シャワーの発熱分布

・電磁シャワーの発熱分布は電子・陽電子FLUX分布とほぼ一致する。 ・ILCの様な高エネルギービームは電磁シャワーが発展して高い発熱量となる。

ビームダンプに適した材料

14MWビーム(500GeV×28μA)入射時の電磁シャワー特性

	Water	Carbon	Aluminum
原子番号 Z	8(酸素として)	6	13
原子番号A	16(酸素として)	12	27
比重(g/cm ³)	1	1.8	2.7
放射長(cm)	34	24	9
臨界エネルギー(MeV)	66	84	43
最大増殖深度(cm)	276	185	76
最大増殖度	802	638	1206
最小電離阻止能(MeV/cm)	1.8	3.3	4.4
最大発熱量(kW/cm)	40	60	149
<u>ビームダン</u> ビームダン 材料の原子	番号、比重が小さ	いほど発熱密度	<u> きは下がる</u>
<mark>Alur</mark> ⇒	・冷却しやすく、熱	応力も緩和され	る。
			State States
			Contraction of the local data
Carbon			3.6
		Contraction of the second	Boom
			Deall
Water			
	فالمطلقين والمناسبين ومناسبتهم	and the second second second second	- Carlos - C
		e en	Contraction of the second s

温度応答の話

$$dT \leq dT_{staedy} + dT_{inst}$$

温度上昇の評価

熱応力の話

応力評価

・熱膨張や外部負荷により[ひずみ]が生じる。[ひずみ]により応力が生じる。

・金属材料の破壊様式は[延性(せん断)破壊]が主要であり、 相当応力(von Mises Stress)により許容負荷を検討する。

$$\sigma_{vM} = \sqrt{\frac{1}{2} [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]} \quad \sigma_i : 主応力系の応力成分$$

熱応力の評価/耐熱応力

計算のも思めるよう	

	Domilium	Graphite Al alloy IG430 A6061-T6		Ti alloy	Be-Cu	Thursenation
	Derymum			Ti-6Al-4V	C10	rungsten
ヤング率(GPa)	303	10.8	68.9	114	115	400
熱膨張率(e ⁻⁶ /K)	11.5	4.8	23.6	8.6	17.8	4.4
ポアソン比	0.18	0.14	0.33	0.33	0.33	0.28
引張強度(MPa)	370	37.2	310	1170	660	980
耐熱応力 - 式(a)	87	617	128	800	216	400
	216	140	167	6.7	218	163.3

許容応力

・応力変動により金属の引張強度は低下していく-金属疲労 ・金属疲労は応力比(最大応力と最小応力の比)や温度条件も影響する。

*1 M. Ackermann, et al, "Selective Laser Melting Technology and Individual Ti-6Al-4V Implants", MM Science Journal 2019(2), 2867-2871, June 2019.
*2 M. Janefek, et al, "The Very High Cycle Fatigue Behavior of Ti-6Al-4V", Acta Physica Polonica Series A 128, 497-503, October 2015.

ILCメインビームダンプの設計 ・ILCのビームダンプ ・メインビームダンプの設備概要 ・メインビームダンプの耐熱設計

ILCのビームダンプ

ILC全体で15基のビームダンプ

種類	粒子	仕様	吸収体	備考			
ビニノ画教田	電子• 陽電子	60 kW, 9ヶ所	アルミ合金	低強度ビームによる加速器調整。 比較的短時間または短期での利用。			
しーム詞金用	電子· 陽電子	400 kW, 2ヶ所	黒鉛	メインライナックのビーム調整。 異常時のビームアボートにも利用する。			
陽電子生成 光子用	光子	300 kW, 1ヶ所	黒鉛 or 水	Undulator陽電子源の場合に必要。 光子は曲げられないので特殊。			
Undulator陽電子源 での10Hz運転用	電子	8 MW, 1ヶ所	水	Undulator陽電子源の場合に必要。 主ビームダンプと同じレベル。			
主ビーム用	電子• 陽電子	<mark>17 MW, 2ヶ所</mark> 含20%マージン	水	連続照射として世界最高の大強度ビーム 年間5000時間程度の連続運転を想定			

[Extraction Line] IP to Main Beam Dump

IPからメインビームダンプまで300m離れている。

- Energy chicane for energy spectrum measurement. (55m away from IP)
- Compton IP for polarization measurement. (150m away from IP)
- 19 sweep magnets for heat density reduction at dump. (~200m away from IP)

Beam Collision

ビームサイズが拡大されることでメインビームダンプの発熱密度は低下する。 (上の計算例では5倍程度ビームサイズが拡大している。)

Beam Power of ILC

Beam Parameters at	IP (fr	m TDR)		1st	L	TeV l	Jpgrade	Dump Design	
Beam rarameters at			Baseline	Stage	Upgrade	A	В	1000	
Centre-of-mass energy	E_{CM}	GeV	500	250	500	1000	1000	1000	
Collision rate	f_{rep}	Hz	5	5	5	4	4	4	
Electron linac rate	f_{linac}	Hz	5	10	5	4	4	4	
Number of bunches	n_b		1312	1312	2625	2450	2450	2820	
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	1.74	1.74	2.0	
Bunch separation	Δt_b	ns	554	554	366	366	366	337	
Pulse current	I_{beam}	mA	5.79	5.8	8.75	7.6	7.6	9.5	
									電子·陽電子
Average total beam power	P_{beam}	MW	10.5	5.9	21.0	27.2	27.2	36	ビームの会計
Estimated AC power	PAC	MW	163	129	204	300	300		
PMS hunch longth		1 st C+	000	~2		,			
Electron RMS ener		Τ Οι	age	5	IVI VV				
Positron RMS ener			Ŭ						
Electron polarisatio	iture	Cinal?)	nar	ada	~1/	<u>1 N / I N</u>	λ/	
Positron polarisatio	JUUIC	={[[]]		PBI	auc	Т	tivi v	VV	
· · · · · · · · · · · · · · · · · · ·									
Horizontal emittan		lumn D	esic	7n ^	12N	ЛМ			
Vertical emittance	-		CJIE	, , , , , , , , , , , , , , , , , , , 	TOU				
IP horizontal beta function	β_x^*	mm	11.0	13.0	11.0	22.6	11.0		
IP vertical beta function (no TF)	β_y^*	mm	0.48	0.41	0.48	0.25	0.23		
IP RMS horizontal beam size	σ_x^*	nm	474	729	474	481	335		
IP RMS veritcal beam size (no TF)	σ_y^*	nm	5.9	1.1	5.9	2.8	2.7		
Luminacity (inc. suciet shift)	T	1034 $-2-1$	1.0	0.75	26	26	4.0		
Evention of luminosity in top 19/		×10° cm *s *	1.0	0.75	5.0	5.0	4.9		
Average energy loss	$L_{0.01}/L$		JO.5%	01.1%	20.3% 1 E%	59.2%	44.5%		
Average energy loss	OBS N	$> 10^{3}$	4.5%	62 /	4.5%	200 5	382.6		
Total pair energy per bunch crossing	Iv pairs F		344.1	46.5	344.1	1338.0	302.0		
Total pair energy per bunch crossing	E_{pairs}	lev	344.1	40.5	344.1	1550.0	5441.0		

メインビームダンプ設計の話

Main Beam Dumpの設計案

設計の可能性は色々と検討された。

Water Dumpの設計

SLAC 2.2MW Beam Dumpを規模拡張することで18MW Beam Dumpを設計*

P. Satyamurthy, et.al., "design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider", NIM A 679 (2012)

・<u>1次冷却水は完全閉鎖ループとし外に出すことない。</u>
 冷却水中のトリチウム以外の放射化物はイオン交換樹脂及びフィルターで除外。
 ・遮蔽体はクリアランス制度をクリアできるように構成(鉄50cm+コンクリート5.5m)。

メインビームダンプの構成要素

上記は最小限の構成要素、 必要に応じてモニターや保守に向けた交換機構などが付加される。

主ビームダンプ本体構造

・水吸収体と強制対流によるビーム熱輸送.

- * 水圧 1 MPa ⇒ 沸点 180℃
- * 渦水流 ⇒ 質量流量: 104.5kg/sec each inlet, 平均吐出流速 2.17m/sec
- ・チタン合金(Ti-6Al4V)によるビーム窓。
- φ300mm×t5mmの球殻構造。ビームは走査されながらダンプに入射する。
- ・ビーム走査(φ12cm)による熱負荷の分散

どこにビームを打ち込めば良いか?

ビーム窓の事例

1 20

	人独反しーム	タノノ近伤のヒー					
Laboratory	Material	Dimensions(mm)	Heat Load on Beam Window				
ILC-Main Beam Dump	Ti-6Al-4V	$t5\times \phi 300$	105W at 14MW				
SLAC Water Dump	Cromeplated Cu	$t1.25 \times \phi 80$	193W at 2.2MW				
SLAC SL-30	A6061-T6	t4.7 $\times \phi$ 100	99W at 600kW				
Jefferson-Lab	A COC1-TC	t0.4 × ~~~880	700W at $1MW$				
Beam Dump	A6061-16	l9.4 ^ ~φ880					
J-PARC Neutron	A5052	t1.5 - double wall	437W at $1MW$				
J-PARC Neutrino	Ti-6Al-4V	t0.3 - double wall	11W at 750kW				
ESS Neutron Target	A6061-T6	t1.0 - double wall	2190W at $5MW$				
*FRIB-Beam Dumpも水dumpであり、t0.5mmのTi合金製外殻に18kWの熱が生じる。注目事例。 *リファレンスはテキストに記載							

いっていたので

- ・ILC Beam Windowは熱負荷・窓厚み共に特別厳しくはない。
- ・ビーム窓交換方法は設計検討中。
- ・第2ビーム窓の導入も検討中。(熱負荷の低さから成立する可能性は高い)

ビーム窓の事例

上る中に

- ・電磁シャワー発展前であるためビーム窓での発熱量は低い。
 - ⇒発熱量:25W/mm, <u>5mm厚ビーム窓で125Wしか発熱しない。</u>
- ・水圧及びビーム熱により球殻部分に応力が生じる。
- ・Ti-6Al-4Vは金属疲労時においても450MPa程度の引張強度を持つ。

最大相当応力48MPa @5mm厚窓 vs Ti6Al4V 強度 450MPa

⇒ <u>機械強度として問題ない範囲</u>

水中の圧力波

ビーム熱による瞬間的熱膨張が圧力波として振動・伝播 負圧によるキャビテーション(気泡生成)が課題となり得る。

*高田弘,中性子源用液体金属標的の技術,OHO2018,2018年9月 高エネルギー加速器セミナー OHO'21ビームダンプ 36

放射線の話

放射線防護 - 残留放射線

◆ビームの直撃を受ける冷却水は放射化する。

ただし、長寿命で問題になりうる核種はBe7(53日)、H3(12年)、C14(5700年)。 ◆ H3以外は冷却水系のイオン交換樹脂等で除外可能。トリチウムは冷却水と 分離不可であるが、完全閉鎖である1次冷却水系から排出ことなく管理する。

LCの多角的活用の話

ILCの多角的活用

【議論された活用案】

- •放射光源活用
- ・ミュオンコライダー
- •MeV带光渦
- •医療用RI製造
- •中性子源
- ・プラズマ加速試験
 などなど・・・

ビームダンプエリアはILCビームを 活用しやすい場所として注目される。

ILC beam dump experiment

ILC運転を阻害せず、ビームダンプに活てられる。タンプでは未知粒子も生成される

まとめ

- ✓ 世界動向としてビーム強度 MW級の加速器が登場し始めている。 ビームダンプなど高熱負荷装置の重要性は増す。
- ✓ メインビームダンプはビーム強度18MWに耐える様に設計している。 また1st Stage(2.6MW)時の尤度ある運転を通して、 設計最適化を進めることができると考えられる。
- ✓ 計画段階のため試験機はないが、実績のある形式を基にしている。
 2ndビーム窓の採用、ビーム走査の最適化など、高度化検討を進める。
- ✓ ビームダンプエリアは、ユニークな性能を持つILCビームを 利用しやすい場所でもある。ほっておくには勿体なさすぎる。