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International Linear Collider
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International Linear Collider

 International Linear Collider is an electron-positron collider accelerator.

 1.3 GHz SRF Cavities accelerates the electrons and positrons to near speed of light.

 7800 1.3 GHz SRF cavities in 850 cryomodules to attain centre of mass energy of 250 GeV.
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1.3 GHz SRF Cavity
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1.3 GHz SRF Cavities

Tesla Cavity
Tesla-like Cavity

 9-cell standing wave 
structure

 Almost 1 m in length 

 Lowest TM mode 
resonates at 1300 MHz.

 Employed in Eu-XFEL 
(DESY), LCLS-II (SLAC).

 9-cell standing wave 
structure

 Optimized for reduction in 
Hpk / Eacc.

 Thicker end plates.

 Employed in STF2 (KEK)
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SRF Cavity Assembly

©Rey.hori / KEK

Cited from: Phys. Rev.ST Accel. Beams 3, 
092001 (2000)
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Materials for SRF Cavity 
Assembly
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Materials for SRF Cavity Assembly

Materials

Niobium SRF Cavity

Titanium Helium Jacket

NbTi Alloy
End plates / End 

Flanges
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Niobium

 Nb has a body-centred cubic (bcc) crystal 
structure and a melting point of 2,468 °C.

 Extracted from mines mostly in Brazil.

 It is choice of material for SRF cavity. 

 It becomes superconducting at 9.2 K.

 33rd most abundant material on earth.

 Largest mines are in Brazil. CBMM Brazil, Araxa Mine
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 Melting and purification of Nb by electron beam 
furnace. 

 Melted in vacuum of < 3E-1 Pa for the first melt and 
< 1E-3 Pa for last melt to obtain high purity Nb. 

 Molten globules drop into water cooled copper 
crucible to form an ingot. 

 Gases and impurities with lower melting 
temperatures than Nb evaporates.

 Most of the impurities are present on the skin of 
the ingot and is machined away for a purer ingot. 

Melting and Purification of Nb

Cited from: arXiv:1501.07142 [physics.acc-ph]
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Melting and Purification of Nb

 Several companies can produce high purity refractory 
metals in larger quantities. 

 ATI Wah Chang (USA), Cabot (USA), W.C. Heraeus 
(Germany), Tokyo Denkai (Japan), Ningxia (China), 
CBMM (Brazil), H.C. Starck (Germany, USA).

 Leybold furnace with 500 kW nominal power melts 
the Niobium at 40 – 50 kg/hr (CBMM). 

 Another 1.8 MW nominal power melts Nb at 90 –
120 kg/hr and pressures < 1E-3 mbar (CBMM). 

Cited from: AIP Conference Proceedings 927, 191 (2007)
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Nb Disk Manufacturing

FG Nb LG Nb
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Cited from: Nuclear Instruments and Methods in Physics Research A 
774 (2015) 133–150



Direct Slicing of LG Nb

Cited from: AIP Conference Proceedings 1352, 79 (2011) 

Cited from: AIP Conference Proceedings 927, 191 (2007)2021/09/09 14



Niobium for 9-Cell 1.3 GHz SRF Cavity

LG Nb
• Grain size > 1 cm.
• Anisotropic mechanical properties.
• Issue with pressure vessel clearance.
• Low Cost.

FG Nb 
• Grain size < 50 μm
• Isotropic mechanical properties.
• Uniform and adequate properties.
• High Cost.

9-Cell 1.3 GHz 
Nb SRF Cavity

Conventional Material R & D Material
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Hydrogen Degassing

 Hydrogen degassing is necessary to avoid Q-disease.

 Cavities are heat treated at temperatures > 500 °C
under vacuum conditions < 10-3 Pa).

 Molybdenum or tungsten resistive heating elements
provides radiation heating.

 Ultra-high vacuum inside the furnace is created with
cryo-pumps.

 Current standard for SRF cavity is 800 °C for 2-3 hours.

Ultra-high vacuum furnace at KEK
2021/09/09
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Induction Furnace at Jlab, USA

 Hot zone is made of Niobium and the cavity is treated by black-body radiation.

 Cu induction coil instills eddy current in the Nb to produce heat.

Cited from: Review of Scientific Instruments 83, 065105 (2012)2021/09/09 17



Titanium

 Material of choice for the helium jacket of the SRF cavity. 

 Lower coefficient of thermal expansion and similar to Nb. 

 Retains strength and ductility at cryogenic temperatures. 

 Sufficient mechanical strength for the helium jacket. 

 Commercially available pure Ti can be used, JIS class 1 and class 2. 

Ti Helium Jacket/Tank Ti end plate2021/09/09 18



Niobium-Titanium Alloy

 It is an alloy of Nb and Ti and mostly used as a type II superconductor for
superconducting magnets.

 Tesla cavity assembly employs NbTi for conical discs (end plates) of the end-group.

 NbTi’s mechanical properties are on par to Ti at high annealing temperatures.

 For Tesla-like cavity assembly, instead of NbTi pure Ti is used for end plates.

End plates for Tesla cavity

End flange
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Pressure Vessel Compliance
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1.3 GHz 9-Cell SRF Cavity Assembly

Cited from: The International Linear Collider: A 
Global Project, arXiv:1903.01629 [hep-ex]

Niobium SRF Cavity with its Titanium
jacket is considered as a pressure vessel

Design must be cleared by high-pressure
gas safety authorities

Determine maximum allowable stress
and buckling pressure using ANSYS

Nb and NbTi not listed as a material for
high pressure vessel design
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Steps Involved in Preparing 
Documentation

 Description of the SRF cavity assembly.

 Mechanical properties of the materials at room and in liquid helium temperatures. 

 Mechanical properties of welded joints like Nb-Nb, Nb-Ti, Ti-Ti welds etc.

 Stress and buckling analysis of the cavity assembly using CAE software at maximum 
allowable working pressure (0.2 MPa) and tuner displacement.

 Cavity fabrication information.

 Pressure test and examination reports.

 Documentation to summarize above items to be submitted to the high-pressure gas 
safety authority.
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Methodology for Material 
Characterization
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Material characterization
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Mechanical 
Properties

Tensile Testing
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Residual Resistivity Ratio (RRR)

 Indicates the level of purity of a material. 

 Purer the material higher the thermal conductivity. 

 For SRF cavities high thermal conductive wall (at 
least 10 W/m-K at 2.0 K) necessary to guide 
dissipated RF power to He II.

RRR for Nb =
ρ 293 K

ρ 9.3 K

RRR normal conductors =
ρ 293 K

ρ 4.2 K

 Nb classified as: low (<100), medium (<300) and 
high RRR (>300). Cited from: arXiv:1501.07142 [physics.acc-ph]
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Tensile Testing

 Material is subjected to uni-axial tension until failure.

 Engineering stress (F/L*W) versus engineering strain (∆L/L) is determined.
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Tensile Testing

 Young’s Modulus (E) – Stiffness of the 
material in tension

𝐸 =
Stress

Strain
(𝑖𝑛 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑖𝑜𝑛)

 0.2% Yield Strength (0.2% Y.S) – Stress 
indicating the limit of elastic behavior

 Tensile Strength (T.S) – Maximum stress 
or stress before failure of the specimen
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Tensile Testing

 Poisson's Ratio (𝜈) – absolute value of the 
ratio of longitudinal strain to the transverse 
strain

𝜈 =
Longitudinal strain

Transverse strain
=

Δ ΤL L

−Δ ΤW W

 Elongation – Measure of ductility of a 
material

Elongation (%) = 100 × Τ∆Lf L
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Tensile Testing Machine

 At KEK, Shimadzu’s® Autograph AG-5000C
tensile test machine is utilized.

 Room and cryogenic temperature tests (with
cryostat) can be performed.

 Stroke length of approximately 1.5 m.

 Rated for ± 50 KN of force.
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Strain Gages

 Its resistance varies w.r.t applied force.

 Metal’s electrical resistance changes when it
deforms.

 It transforms the strain applied into
proportional change in the resistance.

 120 Ω Strain gages are most widely used.

∆R

R0
= 𝑘

∆L

L
= 𝑘. 𝜀

𝑘 is the gage factor Cited from: Karl F. Hoffman, An Introduction to measurements using 
strain gages, Hottinger Baldwin Messtechnik GbbH, Darmstadt

Cited from: https://www.kyowa-
ei.com/eng/technical/strainbasic_course/index.html
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Extensometer

 Measures average strain in the gage section.

 Clip-on type doesn’t need independent mounting 
device.

 Uses a pair of knife edges pressed on the 
specimen to define the gage length.

 At gage length the circuit is balanced, and material 
under tension produce output voltage. 

 Can measure strains upto 100% and is available for 
wide range of gage length (10 – 200 mm).

2021/09/09 31



Wheat stone Bridge and Bridgebox

 Measures unknown resistance compared to known 
resistance values.

 Allows measurements down to milli-ohms.

 4 resistors in series-parallel connection.

 2 diagonally opposite terminal to supply excitation 
voltage and other two to measure output voltage.

 Output in mV / V.

2021/09/09
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Wheat stone Bridge and Bridgebox

Vo
Vs

=
R1

R1 + R2
−

R3

R3 + R4

R1

R2
=
R3

R4

Vo
Vs

=
k

4
ε1 − ε2 + ε4 − ε3
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∆R

R0
= 𝑘

∆L

L
= 𝑘. 𝜀

Ratio of output to 
supply voltage

Balanced Wheatstone 
bridge condition

Strain Gage



Configurations of Strain Measurement

Quarter bridge

No bending strain cancellation 
or temperature compensation

Vo = Vs
k

4
(ε0)
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Half Bridge Configuration

Half bridge

Temperature 
Compensation only

Vo = Vs
k

4
(ε0)
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Half Bridge Configuration

Half bridge

Bending strain cancellation 
only

Vo = Vs
k

2
(ε0)

*Output voltage is doubled

Room temperature testing
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Full Bridge Configuration

Full bridge

Bending strain cancellation & 
temperature compensation

Vo = Vs
k

2
(ε0)

*Output voltage is doubled

Cryogenic temperature testing
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Strain Amplifier

 Output voltage from a Wheatstone bridge circuit is small.

 Electrical amplification for measurement and recording.

 Kyowa® strain amplifiers are used to supply bridge voltage
and amplification of the bridge output voltage.

 Bridge excitation voltage of 2 V and 0.5 V.

 Maximum output voltage of 10 V with maximum strain of
9999 micro-strains, i.e 1% strain.

 Internal gain can be set from 200x to 2000x.
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Mechanical Properties
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Why Mechanical Characterization?

 Cavity is fabricated at room temperature conditions and operated in LHe. 

 Materials should have requisite strength to handle the procedures involved in cavity 
fabrication, such as press forming, trimming, welding etc.

 Materials should be able to handle stress generated due to large temperature variation. 

 SRF cavity assembly must be able to withstand conditions set by high-pressure gas safety 
authorities for pressure vessels. 

 Materials for cavity assembly such Nb, Ti and NbTi are known to be weakest at room 
temperature conditions. 
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Room Temperature Tensile Tests
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Sample in the jig of tensile test machine Necking of Aluminum sample
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Low Temperature Tensile Testing

 SRF cavity assembly operational
temperature is 2.0 K.

 Mechanical properties of metals
changes drastically from 300 K to 2.0 K.

 A custom-built cryostat at KEK to dip
tensile test specimens in liquid helium.

 Three specimens can be tested in one
cooldown cycle.
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Specimen for Tensile Testing

Cryogenic temperature tensile testing specimen

Room temperature tensile testing specimen

2021/09/09
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Preparation of Tensile Test Specimen

Wire EDM Cut Chemical Polishing Annealing

Strain Gage Bonding
Oven for bondingTensile test specimen
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Niobium Mechanical Properties

 Mostly properties of FG Nb will be presented.

 FG Nb is a standard material that is considered while designing the SRF cavity.

 Data presented here is for the annealed specimens.

 Employed for Eu-XFEL (DESY), LCLS-II (SLAC) and STF-2 (KEK).

 LG Nb is mainly a research material and currently not used for large scale accelerators.

 LG Nb properties have been studied in details at KEK but the data is still under publication.
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Stress-strain curve for FG Nb

At Room Temperature In Liquid Helium (4.21 K)
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 Isotropic mechanical properties (independent of location of tensile test specimen).

 However, properties do deteriorates with annealing.



Effect of Annealing on Nb

 Material properties deteriorates with 
annealing at higher temperatures.

 Least deterioration at 600 °C without any 
loss in hydrogen degassing performance.

 However, 800 °C is considered as an ideal 
temperature due to better flux expulsion.

 Annealing relieves residual stresses and 
helps in recrystallization too.

Cited from: AIP Conference Proceedings 671, 227 (2003)
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Mechanical Properties of FG Nb

Tensile Strength w.r.t temperature Yield strength w.r.t temperature

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)2021/09/09 49



Mechanical Properties of FG Nb

Young’s modulus w.r.t temperature Elongation w.r.t temperature

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)
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LG Nb Mechanical Properties

 Anisotropic mechanical properties for LG Nb due to grain orientation.

 T.S can be as low as 66 MPa to as high as 124 MPa.

Cited from: IOP Conf. Ser.: Mater. Sci. Eng. 756 0120022021/09/09 51



 Large variation in low temperature mechanical 
properties for LG Nb due to grain orientation.

 T.S can be as low as 400 MPa to as high as 800 MPa.

 0.2% Y.S is difficult to determine due to serrations in 
that operational region.

LG Nb Mechanical Properties
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532021/09/09

FG Nb tensile tested specimens at KEK by Nakai et al. Room temperature LG Nb tensile tested specimens by Zhao et al.

Examples of some tested specimens

Cited from: IOP Conf. Ser.: Mater. Sci. Eng. 756 012002



Examples of some tested specimens

FG Nb

LG Nb

LG Nb

Low temperature tensile tested specimens (by me)
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Nb Mechanical Properties w.r.t SRF 
Cavity Strength Requirement

Material Y.S

[MPa]

T.S 

[MPa]

Elongation 
[%]

FG Nb ~50 ~150 ~40

LG Nb 66-124 84-136 > 30

Tesla-like > 39 > 120 > 30

Eu-XFEL > 50 > 140 > 30

Material Y.S

[MPa]

T.S 

[MPa]

Elongation 
[%]

FG Nb ~500 800 - 900 ~7

LG Nb - 400 - 800 ~6

Tesla-like > 300

Only necessary for formability 
of SRF cavity half cells

For high-pressure gas safety 
regulation
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Titanium Mechanical Properties

Tensile Strength w.r.t temperature Yield strength w.r.t temperature

 Sufficient mechanical properties for pressure vessel design.

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)
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Young’s modulus w.r.t temperature Elongation w.r.t temperature

 Young’s modulus and elongation is maintained in operational range.

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)2021/09/09 57

Titanium Mechanical Properties



Ti Welded Joints Mechanical Strength

 Ti-Ti weld has similar properties to pure Ti. 

 Ti-Nb EBW weld has sufficient strength for SRF cavity assembly.

Cited from: K. Mukugi et al., “Low temperature mechanical properties of Titanium and weld joints (Ti/Ti, 
Ti/Nb) for helium vessels”, in Proc. The 10th Workshop on RF Superconductivity, Tsukuba, Japan, 2001.
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NbTi Alloy Mechanical Strength

Tensile Strength w.r.t temperature Yield strength w.r.t temperature

 Sufficient mechanical properties for pressure vessel design.

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)2021/09/09 59



Young’s modulus w.r.t temperature Elongation w.r.t temperature

 Young’s modulus is constant and elongation is reduced in operational range.

Cited from: H. Nakai et al., “Tensile test of materials at low temperatures for ILC Superconducting 
RF cavities and cryomodules”, Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)2021/09/09 60

NbTi Alloy Mechanical Strength



Recent Developments in 
Niobium Material Technology
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Medium Grain Niobium

 New material manufactured by ATI (USA).

 It has an average grain size of 200-300 microns, 
with occasional 1-2 mm grains.

 It is expected to have similar properties as FG Nb.

 Cost effective material as it can be directly sliced 
after forging.

 Mechanical property characterization is being 
conducted at KEK.

Cited from: A. Kumar et al., MOPCAV004, SRF 212021/09/09 62



Niobium for 9-Cell 1.3 GHz SRF Cavity

LG Nb
• Grain size > 1 cm.
• Anisotropic mechanical

properties.
• Issue with KHK clearance
• Low Cost.

ATI MG Nb 
• Grain size - 200-300 μm,

occasional 1-2 mm grains
• New material with no data.
• Isotropic properties?
• Viable for SRF cavity?
• Cost reduction w.r.t FG Nb

FG Nb 
• Grain size < 50 μm
• Isotropic mechanical properties.
• Uniform and adequate

properties.
• High Cost.

9-Cell 1.3 GHz 
Nb SRF Cavity

Conventional Material R & D Material New Material

Cited from: A. Kumar et al., 
MOPCAV004, SRF 21
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Thank you for your attention!
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