

1.3-GHz Superconducting Radio Frequency Cavity Materials and their Evaluation

Ashish KUMAR

CASA, Accelerator Laboratory,

High Energy Accelerator Research Organization (KEK)

2021/09/09

2021/09/09

- 1. International Linear Collider
- 2. 1.3 GHz SRF Cavities
- 3. Materials for SRF Cavity Assembly
- 4. Pressure Vessel Compliance for SRF cavities
- 5. Methodology to Evaluate Mechanical Properties
- 6. Mechanical Properties
- 7. Recent Developments in Niobium Material Technology

International Linear Collider

International Linear Collider

- International Linear Collider is an electron-positron collider accelerator.
- 1.3 GHz SRF Cavities accelerates the electrons and positrons to near speed of light.
- 7800 1.3 GHz SRF cavities in 850 cryomodules to attain centre of mass energy of 250 GeV.

1.3 GHz SRF Cavity

1.3 GHz SRF Cavities

SRF Cavity Assembly

Materials for SRF Cavity Assembly

- Nb has a body-centred cubic (bcc) crystal structure and a melting point of 2,468 °C.
- Extracted from mines mostly in Brazil.
- It is choice of material for SRF cavity.
- It becomes superconducting at 9.2 K.
- 33rd most abundant material on earth.
- Largest mines are in Brazil.

Melting and Purification of Nb

- Melting and purification of Nb by electron beam furnace.
- Melted in vacuum of < 3E-1 Pa for the first melt and < 1E-3 Pa for last melt to obtain high purity Nb.</p>
- Molten globules drop into water cooled copper crucible to form an ingot.
- Gases and impurities with lower melting temperatures than Nb evaporates.
- Most of the impurities are present on the skin of the ingot and is machined away for a purer ingot.

Cited from: arXiv:1501.07142 [physics.acc-ph]

Melting and Purification of Nb

- Several companies can produce high purity refractory metals in larger quantities.
- ATI Wah Chang (USA), Cabot (USA), W.C. Heraeus (Germany), Tokyo Denkai (Japan), Ningxia (China), CBMM (Brazil), H.C. Starck (Germany, USA).
- Leybold furnace with 500 kW nominal power melts the Niobium at 40 – 50 kg/hr (CBMM).
- Another 1.8 MW nominal power melts Nb at 90 120 kg/hr and pressures < 1E-3 mbar (CBMM).

Nb Disk Manufacturing

Cited from: Nuclear Instruments and Methods in Physics Research A 774 (2015) 133-150

Direct Slicing of LG Nb

Cited from: AIP Conference Proceedings 1352, 79 (2011)

2021/09/09

Niobium for 9-Cell 1.3 GHz SRF Cavity

Conventional Material

<u>FG Nb</u>

- Grain size < 50 μm
- Isotropic mechanical properties.
- Uniform and adequate properties.
- High Cost.

R & D Material

<u>LG Nb</u>

- Grain size > 1 cm.
- Anisotropic mechanical properties.
- Issue with pressure vessel clearance.
- Low Cost.

Hydrogen Degassing

- Hydrogen degassing is necessary to avoid Q-disease.
- Cavities are heat treated at temperatures > 500 °C under vacuum conditions < 10⁻³ Pa).
- Molybdenum or tungsten resistive heating elements provides radiation heating.
- Ultra-high vacuum inside the furnace is created with cryo-pumps.
- Current standard for SRF cavity is 800 °C for 2-3 hours.

Ultra-high vacuum furnace at KEK

Induction Furnace at Jlab, USA

- Hot zone is made of Niobium and the cavity is treated by black-body radiation.
- Cu induction coil instills eddy current in the Nb to produce heat.

- Material of choice for the helium jacket of the SRF cavity.
- Lower coefficient of thermal expansion and similar to Nb.
- Retains strength and ductility at cryogenic temperatures.
- Sufficient mechanical strength for the helium jacket.
- Commercially available pure Ti can be used, JIS class 1 and class 2.

Niobium-Titanium Alloy

- It is an alloy of Nb and Ti and mostly used as a type II superconductor for superconducting magnets.
- Tesla cavity assembly employs NbTi for conical discs (end plates) of the end-group.
- NbTi's mechanical properties are on par to Ti at high annealing temperatures.
- For Tesla-like cavity assembly, instead of NbTi pure Ti is used for end plates.

Pressure Vessel Compliance

Steps Involved in Preparing Documentation

- Description of the SRF cavity assembly.
- Mechanical properties of the materials at room and in liquid helium temperatures.
- Mechanical properties of welded joints like Nb-Nb, Nb-Ti, Ti-Ti welds etc.
- Stress and buckling analysis of the cavity assembly using CAE software at maximum allowable working pressure (0.2 MPa) and tuner displacement.
- Cavity fabrication information.
- Pressure test and examination reports.
- Documentation to summarize above items to be submitted to the high-pressure gas safety authority.

Methodology for Material Characterization

Residual Resistivity Ratio (RRR)

- Indicates the level of purity of a material.
- Purer the material higher the thermal conductivity.
- For SRF cavities high thermal conductive wall (at least 10 W/m-K at 2.0 K) necessary to guide dissipated RF power to He II.

RRR for Nb =
$$\frac{\rho(293 \text{ K})}{\rho(9.3 \text{ K})}$$

RRR (normal conductors) = $\frac{\rho(293 \text{ K})}{\rho(4.2 \text{ K})}$

 Nb classified as: low (<100), medium (<300) and high RRR (>300).

Cited from: arXiv:1501.07142 [physics.acc-ph]

Tensile Testing

- Material is subjected to uni-axial tension until failure.
- Engineering stress (F/L*W) versus engineering strain (ΔL/L) is determined.

Young's Modulus (E) – Stiffness of the material in tension

$$E = \frac{\text{Stress}}{\text{Strain}} (in \ Elastic \ Region)$$

 0.2% Yield Strength (0.2% Y.S) – Stress indicating the limit of elastic behavior

 Tensile Strength (T.S) – Maximum stress or stress before failure of the specimen

1

 Poisson's Ratio (v) – absolute value of the ratio of longitudinal strain to the transverse strain

$$\nu = \left| \frac{\text{Longitudinal strain}}{\text{Transverse strain}} \right| = \left| \frac{\Delta L/L}{-\Delta W/W} \right|$$

 Elongation – Measure of ductility of a material

Elongation (%) = $100 \times \Delta L_f/L$

Tensile Testing Machine

- At KEK, Shimadzu's[®] Autograph AG-5000C tensile test machine is utilized.
- Room and cryogenic temperature tests (with cryostat) can be performed.
- Stroke length of approximately 1.5 m.
- Rated for ± 50 KN of force.

Strain Gages

- Its resistance varies w.r.t applied force.
- Metal's electrical resistance changes when it deforms.
- It transforms the strain applied into proportional change in the resistance.
- 120 Ω Strain gages are most widely used.

$$\frac{\Delta R}{R_0} = k \frac{\Delta L}{L} = k \cdot \varepsilon$$

ei.com/eng/technical/strainbasic_course/index.html

Cited from: Karl F. Hoffman, An Introduction to measurements using strain gages, Hottinger Baldwin Messtechnik GbbH, Darmstadt

- Measures average strain in the gage section.
- Clip-on type doesn't need independent mounting device.
- Uses a pair of knife edges pressed on the specimen to define the gage length.
- At gage length the circuit is balanced, and material under tension produce output voltage.
- Can measure strains upto 100% and is available for wide range of gage length (10 – 200 mm).

Wheat stone Bridge and Bridgebox

- Measures unknown resistance compared to known resistance values.
- Allows measurements down to milli-ohms.
- 4 resistors in series-parallel connection.
- 2 diagonally opposite terminal to supply excitation voltage and other two to measure output voltage.
- Output in mV / V.

Kyowa[®] DB-120A Bridgebox

Wheat stone Bridge and Bridgebox

Configurations of Strain Measurement

2021/09/09

Half Bridge Configuration

Half Bridge Configuration

*Output voltage is doubled

2021/09/09

Full Bridge Configuration

2021/09/09

KYOWA

- Output voltage from a Wheatstone bridge circuit is small.
- Electrical amplification for measurement and recording.
- Kyowa[®] strain amplifiers are used to supply bridge voltage and amplification of the bridge output voltage.
- Bridge excitation voltage of 2 V and 0.5 V.
- Maximum output voltage of 10 V with maximum strain of 9999 micro-strains, i.e 1% strain.
- Internal gain can be set from 200x to 2000x.

Mechanical Properties

- Cavity is fabricated at room temperature conditions and operated in LHe.
- Materials should have requisite strength to handle the procedures involved in cavity fabrication, such as press forming, trimming, welding etc.
- Materials should be able to handle stress generated due to large temperature variation.
- SRF cavity assembly must be able to withstand conditions set by high-pressure gas safety authorities for pressure vessels.
- Materials for cavity assembly such Nb, Ti and NbTi are known to be weakest at room temperature conditions.

Room Temperature Tensile Tests

Sample in the jig of tensile test machine

Necking of Aluminum sample

2021/09/09

Low Temperature Tensile Testing

- SRF cavity assembly operational temperature is 2.0 K.
- Mechanical properties of metals changes drastically from 300 K to 2.0 K.
- A custom-built cryostat at KEK to dip tensile test specimens in liquid helium.
- Three specimens can be tested in one cooldown cycle.

Specimen for Tensile Testing

Cryogenic temperature tensile testing specimen

Room temperature tensile testing specimen

2021/09/09

Preparation of Tensile Test Specimen

- Mostly properties of FG Nb will be presented.
- FG Nb is a standard material that is considered while designing the SRF cavity.
- Data presented here is for the annealed specimens.
- Employed for Eu-XFEL (DESY), LCLS-II (SLAC) and STF-2 (KEK).
- LG Nb is mainly a research material and currently not used for large scale accelerators.
- LG Nb properties have been studied in details at KEK but the data is still under publication.

Stress-strain curve for FG Nb

- Isotropic mechanical properties (independent of location of tensile test specimen).
- However, properties do deteriorates with annealing.

Effect of Annealing on Nb

- Material properties deteriorates with annealing at higher temperatures.
- Least deterioration at 600 °C without any loss in hydrogen degassing performance.
- However, 800 °C is considered as an ideal temperature due to better flux expulsion.
- Annealing relieves residual stresses and helps in recrystallization too.

Cited from: AIP Conference Proceedings 671, 227 (2003)

Mechanical Properties of FG Nb

2021/09/09

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

Mechanical Properties of FG Nb

2021/09/09

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting 50 RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

Modulus of Elasticity [GPa]

LG Nb Mechanical Properties

- Anisotropic mechanical properties for LG Nb due to grain orientation.
- T.S can be as low as 66 MPa to as high as 124 MPa.

LG Nb Mechanical Properties

- Large variation in low temperature mechanical properties for LG Nb due to grain orientation.
- T.S can be as low as 400 MPa to as high as 800 MPa.
- 0.2% Y.S is difficult to determine due to serrations in that operational region.

Examples of some tested specimens

Cited from: IOP Conf. Ser.: Mater. Sci. Eng. 756 012002

FG Nb tensile tested specimens at KEK by Nakai et al.

Room temperature LG Nb tensile tested specimens by Zhao et al.

Examples of some tested specimens

2021/09/09

Nb Mechanical Properties w.r.t SRF Cavity Strength Requirement

Material	Y.S [MPa]	T.S [MPa]	Elongation [%]
FG Nb	~50	~150	~40
LG Nb	66-124	84-136	> 30
Tesla-like	> 39	> 120	> 30
Eu-XFEL	> 50	> 140	> 30

Material	Y.S	T.S	Elongation
	[MPa]	[MPa]	[%]
FG Nb	~500	800 - 900	~7
LG Nb	-	400 - 800	~6
Tesla-like		> 300	

For high-pressure gas safety regulation

Only necessary for formability of SRF cavity half cells

Titanium Mechanical Properties

56

Sufficient mechanical properties for pressure vessel design.

2021/09/09

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

Titanium Mechanical Properties

Young's modulus and elongation is maintained in operational range.

2021/09/09

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

Ti Welded Joints Mechanical Strength

- Ti-Ti weld has similar properties to pure Ti.
- Ti-Nb EBW weld has sufficient strength for SRF cavity assembly.

2021/09/09 Cited from: K. Mukugi et al., "Low temperature mechanical properties of Titanium and weld joints (Ti/Ti, Ti/Nb) for helium vessels", in Proc. The 10th Workshop on RF Superconductivity, Tsukuba, Japan, 2001.

NbTi Alloy Mechanical Strength

Sufficient mechanical properties for pressure vessel design.

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

NbTi Alloy Mechanical Strength

Young's modulus is constant and elongation is reduced in operational range.

Cited from: H. Nakai et al., "Tensile test of materials at low temperatures for ILC Superconducting RF cavities and cryomodules", Teion Kogaku (J. Cryo. Super. Soc. Japan) Vol. 48 No. 8 (2013)

Recent Developments in Niobium Material Technology

Medium Grain Niobium

Nb melting

- It has an average grain size of 200-300 microns, with occasional 1-2 mm grains.
- It is expected to have similar properties as FG Nb.
- Cost effective material as it can be directly sliced after forging.
- Mechanical property characterization is being conducted at KEK.

Niobium for 9-Cell 1.3 GHz SRF Cavity

Cited from: A. Kumar et al., MOPCAV004, SRF 21

Conventional Material

<u>FG Nb</u>

• Grain size < 50 μm

9-Cell 1.3 GHz

Nb SRF Cavity

- Isotropic mechanical properties.
- Uniform and adequate properties.
 - High Cost.

R & D Material

<u>LG Nb</u>

- Grain size > 1 cm.
- Anisotropic mechanical properties.
- Issue with KHK clearance
- Low Cost.

New Material

ATI MG Nb

- Grain size 200-300 μm, occasional 1-2 mm grains
- New material with no data.
- Isotropic properties?
- Viable for SRF cavity?
- Cost reduction w.r.t FG Nb

Thank you for your attention!

