

Introduction to LLRF

OHO'21 10th of September 2021

Mathieu Omet

• This lecture will give only a rough overview, it is incomplete by its nature

Contents

- Introduction
- Cavity theory
- LLRF system overview
- Signal sampling
- Digital signal processing and implementation
- Controller theory
- Example features of an LLRF system
- Summary

Introduction

Mathieu Omet, 10th of September 2021

LLRF

What does LLRF stand for? What is it about?

- Low Level Radio Frequency
- The goal: control the amplitude and phase of electro-magnetic fields within cavities
 - Required at a wide range of facilities, from small test facilities to large scale accelerators
- These fields can have high amplitudes and high frequencies
- Thus down-conversion to small amplitudes for detection is applied
 - (and in some cases also a down-conversion to low frequencies, while preserving amplitude and phase information, is applied)

Superconducting and Normal Conducting Cavities

• Frequency ranges from MHz to tens of GHz

Modes of Operation

- Pulsed mode
 - Short Pulse mode (SP)
 - Duty factor of e.g. 1%
 - Long Pulse mode (LP)
 - Duty factor of 10% to 50%
 - Only a certain portion of time is useable for beam acceleration
- Continuous Wave (CW)
 - Continuous RF field
 - Duty factor of 100%
 - Beam can be accelerated all the time

Most basic layout of an RF system

Open loop operation

- Controller creates drive signal corresponding to a set point
- Signal is amplified
- Signal is coupled into the cavity
- Signal is coupled out of the cavity
- Signal is detected by the controller

Set point Monitor

Amplifier

LLRF

Most basic layout of an RF system

Closed loop operation

- Controller creates drive signal corresponding to a set point
- Signal is amplified
- Signal is coupled into the cavity
- Signal is coupled out of the cavity
- Signal is detected by the controller
- Controller compares signal to the set point and adjusts the drive signal accordingly

Most basic layout of an RF system

• Let's take a look at the cavity first

LLRF

Cavity Theory

Cavity modeling: RCL model

- Electric circuit
 - Resistor R
 - Inductor L
 - Capacitor C
- Forms a harmonic oscillator

Cavity modeling: Quality factor in general

Cavity modeling: Unloaded quality factor

• Assumes losses only due to surface resistance

Cavity modeling: External quality factor

• Accounts for external losses (e.g. via the power coupler)

Cavity modeling: Loaded quality factor

$$Q_L = 2\pi \frac{\text{stored energy in cavity}}{\text{total energy loss per cycle}} = \frac{\omega_0 W}{P_{tot}}$$

$$P_{tot} = P_{diss} + P_{ext}$$

$$\frac{1}{Q_L} = \frac{1}{Q_0} + \frac{1}{Q_{ext}}$$

In case of SC cavities Q_0 is several orders of magnitude larger than Q_{ext} . Thus, Q_L is in the same order as Q_{ext} .

Cavity modeling: Definition of the Loaded Quality Factor

- Add transition line
- Impedance Z_{ext} is like a parallel resistor to R (characteristic impedance of a coaxial cable: 50 Ω)
- Both can be replaced by the loaded shunt impedance R_L

$$\frac{R}{Q_0} = \omega_0 = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}$$

 $\frac{1}{R_L} = \frac{1}{R} + \frac{1}{Z_{\text{curr}}}$

 R/Q_0 depends only on ω_0 , C, and L, which means it <u>depends only on the</u> <u>cavity geometry</u> and not the surface resistance.

 $Q_0 = \omega_0 RC = \frac{R}{L\omega_0} = \frac{\omega_0 W}{P_W}$

Cavity modeling: Definition of the Loaded Quality Factor

- The shunt impedance R_{sh} depends on the dissipated power
- Includes factor ½ of the time average

$$P_{diss} = \frac{1}{2} \cdot \frac{V_{cav}^2}{R} = \frac{V_{cav}^2}{R_{sh}}$$

$$R = \frac{1}{2}R_{sh} = \frac{1}{2}\frac{r}{Q}Q_0$$

Definition of normalized shunt impedance

$$\frac{r}{Q} := \frac{R_{sh}}{Q_0} = \frac{2R}{Q_0}$$

Cavity modeling: Definition of the Loaded Quality Factor

 Coupling between cavity and transmission line

$$\beta = \frac{R}{Z_{ext}}$$

$$\frac{1}{R_L} = \frac{1}{R} + \frac{1}{Z_{ext}}$$

$$R_L = \frac{R}{1+\beta}$$

$$\frac{r}{Q} \coloneqq \frac{R_{sh}}{Q_0} = \frac{2R}{Q_0}$$

 $\omega_{1/2} = \frac{\omega_0}{2Q_L}$

 Q_L can be manipulated by changing the coupling β

And with this the cavity bandwidth

 $I_{C} + I_{R} + I_{L} = I_{cav}$ $\dot{I}_{C} + \dot{I}_{R} + \dot{I}_{L} = \dot{I}_{cav}$ $\dot{I}_{C} = C\ddot{V}_{cav}$ $\dot{I}_{R} = \frac{1}{R_{L}}\dot{V}_{cav}$ $\dot{I}_{L} = \frac{1}{L}V_{cav}$ $C\ddot{V}_{cav} + \frac{1}{R_{L}}\dot{V}_{cav} + \frac{1}{L}V_{cav} = \dot{I}_{cav}$

$$\ddot{V}_{cav} + \frac{1}{R_L C} \dot{V}_{cav} + \frac{1}{L C} V_{cav} = \frac{1}{C} \dot{I}_{cav}$$
$$\frac{1}{R_L C} = \frac{\omega_0}{Q_L}$$
$$\frac{1}{L C} = \omega_0^2$$
$$\ddot{V}_{cav} + \frac{\omega_0}{Q_L} \dot{V}_{cav} + \omega_0^2 V_{cav} = \frac{1}{C} I_{cav}$$

$$V_{\text{hom}} = e^{-\frac{\omega_0 t}{2Q_L}} \left(C_1 e^{i\alpha t} + C_2 e^{-i\alpha t} \right)$$
$$\alpha = \omega_0 \sqrt{1 - \frac{1}{4Q_L^2}}$$

One particular solution can be found with

$$I_{cav} = \hat{I}e^{i\omega t}$$

 $V_{cav} = \hat{V}e^{i(\omega t + \phi)}$

 Φ is the angle between the generator current and the resonator voltage

LLRF

$$V_{\rm par} = \frac{R_L \hat{I} e^{i(\omega t + \phi)}}{\sqrt{1 + \tan^2 \phi}}$$

with
$$\tan \phi = R\left(\frac{1}{\omega L} - \omega C\right) = Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)$$

The particular solution is also called a stationary solution. If the generator frequency ω is very close to the resonance frequency ω_0 , the following approximation can be done:

$$\hat{V}_{\text{par}}(\Delta\omega) \approx \frac{R_L \hat{I}}{\sqrt{1 + \left(2Q_L \frac{\Delta\omega}{\omega}\right)}}$$

where

 $\Delta \omega = \omega_0 - \omega$

The frequency dependency of the amplitude is known as the Lorentz curve

Bandwidth of the cavity is defined by the -3 dB point

LLRF

The general solution is:

$$V_{cav} = V_{hom} + V_{par} = e^{-\frac{\omega_0 t}{2Q_L}} \left(C_1 e^{i\alpha t} + C_2 e^{-i\alpha t} \right) + \frac{R_L \hat{I} e^{i(\omega t - \phi)}}{\sqrt{1 + \tan^2 \phi}}$$

since $Q_L >> 1$ One can approximate: $\alpha \approx \omega_0$
for $C_1 = C_2 = -\frac{R_L \hat{I}}{2}$
 $V_{fill} = V_0 \left(1 - e^{-\frac{t}{\tau}} \right)$
with $V_0 = R_L \hat{I} \approx 2R_L I_g = \frac{r}{Q} Q_L I_g$ $\tau = \frac{2Q_L}{\omega_0}$
 \hat{I} represents an AC current
 I_g represents a DC current

$$V_{\text{flat}} = \frac{r}{Q} Q_L \left(I_g \left(1 - e^{-\frac{t}{\tau}} \right) - I_{b0} \cos(\phi_b) \left(1 - e^{-\frac{t - T_{\text{inj}}}{\tau}} \right) \right)$$

Center for Applied Superconducting Accelerator 応用超伝導加速器センター

 $\hat{I} \approx 2I_g$

 $\hat{I}_b \approx 2I_{b0}$

 $I_{cav} = 2I_g - 2I_{b0}$

$$\frac{\mathrm{d}V_{\mathrm{flat}}}{\mathrm{d}t} = 0 \qquad \text{We would like to have a constant voltage over the flattop}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{r}{Q}Q_L\left(I_g\left(1-e^{-\frac{t}{\tau}}\right) - I_{b0}\left(1-e^{-\frac{t-T_{inj}}{\tau}}\right)\right) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{r}{Q}Q_L\left(I_g - I_g e^{-\frac{t}{\tau}} - I_{b0} + I_{b0} e^{-\frac{t-T_{inj}}{\tau}}\right) = 0$$

$$\frac{r}{Q}Q_L\left(I_g\frac{1}{\tau}e^{-\frac{t}{\tau}} - I_{b0}\frac{1}{\tau}e^{-\frac{t-T_{inj}}{\tau}}\right) = 0$$

$$I_g e^{-\frac{t}{\tau}} = I_{b0}e^{-\frac{t-T_{inj}}{\tau}}$$

$$I_g = I_{b0}e^{\frac{T_{inj}}{\tau}}$$

$$V_{\text{fill}} = V_0 \left(1 - e^{-\frac{t}{\tau}} \right)$$
$$V_{\text{flat}} = \frac{r}{Q} Q_L I_{b0} \left(e^{\frac{T_{\text{inj}}\omega_0}{2Q_L}} - 1 \right)$$

Parameter	Value
Filling time	923 µs
Beam current	5.8 mA
QL	5.44E6

 $P_{flat} = \frac{V_{cav}^2}{4\frac{r}{O}Q_L} \left(1 + \frac{\frac{r}{Q}Q_L I_{b0}}{V_{cav}}\right)^2$

τ Ζ

Flattop Powers $P = \frac{1}{4} \frac{r}{Q} Q_L I_g^2$

Derivation of Filling and

$$P_{\text{fill}} = \frac{V_{cav}^2}{4\frac{r}{Q}Q_L \left(1 - e^{-\frac{T_{\text{inj}}\omega_0}{2Q_L}}\right)^2}$$

$$V_{cav} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV}$$

 $Q_L = 5.44 \cdot 10^6$
 $T_{inj} = 923 \ \mu \text{s}$
 $P_{fill} \text{ is } 190 \text{ kW}$
 $I_{b0} = 5.8 \text{ mA}$ $\phi_b = 180^\circ$
 $P_{flat} \text{ is } 190 \text{ kW}$

1 000

29

00 - 1

25 Voltage [MV] 10 5

the whole RF pulse

35

30

0

Non-linear behavior of a klystron (red curve)

30

Derivation of Filling and Flattop Powers

• One can stay at a single working point of the power amplifier throughout

• Set of equations for finding optimal parameters

The optimal coupling β_{opt}

$$\beta_{opt} = 1 + \frac{\frac{r}{Q}Q_0 I_{b0}}{V_{cav}}\cos(\phi_b)$$

Minimum power for maintaining the cavity voltage

$$P_{min} = \beta_{opt} \frac{V_{cav}^2}{\frac{r}{Q}Q_0}$$

Optimum tuning angle

$$\tan(\phi_{opt}) = -\frac{\frac{\bar{r}}{\bar{Q}}Q_{L,opt}I_{b0}}{V_{cav}}\sin(\phi_b)$$

Mathieu Omet, 10th of September 2021

For superconducting cavities one can simplify

$$Q_{L,opt} = \frac{V_{cav}}{\frac{r}{Q}I_{b0}\cos(\phi_b)}$$

$$\phi_{opt} = -\phi_b$$

$$P_{flat,min} = \frac{V_{cav}^2}{\frac{r}{Q}Q_{L,opt}} = V_{cav}I_{b0}\cos(\phi_b)$$

Example set of parameter

$$V_{cav} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV}$$

 $I_{b0} = 5.8 \text{ mA}$
 $\cos(\phi_b) = 1$
 $Q_{L,opt} = 5.44 \cdot 10^6$
 $P_{flat,min} = 190 \text{ kW}$

Detuned Cavity with Beam Loading

In reality cavities are detuned by the tuning angle Φ . The sources are Lorentz force detuning and microphonics.

Cavity Differential Equation Continues in Time

Differential equation for a driven LCR circuit

$$\ddot{\mathbf{V}}(t) + \frac{\omega_0}{Q_L} \dot{\mathbf{V}}(t) + \omega_0^2 \mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L} \dot{\mathbf{I}}(t)$$

$$rac{\omega_0}{Q_L} \ll \omega_0$$
 The cavity is a weakly damped system $\omega_{res} = \omega_0 \sqrt{1 - rac{1}{4Q_L^2}} \approx \omega_0$

Driving current I_g and Fourier component I_b of pulsed beam are harmonic with time dependence $e^{i\omega t}$. Therefore, we separate the fast RF oscillation from the real and imaginary parts of the field vector.

$$\mathbf{V}(t) = (V_r(t) + iV_i(t)) \cdot e^{i\omega t}$$

$$\mathbf{I}(t) = (I_r(t) + iI_i(t)) \cdot e^{i\omega t}$$

Insertion in equation above and omission of the second-order time derivatives of V yields...

Cavity Differential Equation Continues in Time

... the first-order differential equation for the envelope:

$$\begin{split} \dot{V}_r &+ \omega_{1/2} \, V_r \,+\, \Delta \omega \, V_i \,=\, R_L \, \omega_{1/2} \, I_r \\ \dot{V}_i \,+\, \omega_{1/2} \, V_i \,-\, \Delta \omega \, V_r \,=\, R_L \, \omega_{1/2} \, I_i \\ \text{with} & \begin{array}{c} \omega_{1/2} \,=\, \frac{\omega_0}{2Q_L} & \text{cavity bandwidth} \\ \Delta \omega \,=\, \omega_0 \,-\, \omega & \text{cavity detuning} \end{array} \end{split}$$

In state space formalism

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} V_r \\ V_i \end{pmatrix} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} V_r \\ V_i \end{pmatrix} + \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \cdot \begin{pmatrix} I_r \\ I_i \end{pmatrix}$$
$$\dot{x}(t) = \mathbf{A} \cdot x(t) + \mathbf{B} \cdot u(t)$$

$$\mathbf{A} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix}$$
$$x = \begin{pmatrix} V_r \\ V_i \end{pmatrix}$$
$$u = \begin{pmatrix} I_r \\ I_i \end{pmatrix}$$

Mathieu Omet, 10th of September 2021

Cavity Differential Equation Continuous and Discreate in Time

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{cc} V_r \\ V_i \end{array}\right) = \left(\begin{array}{cc} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{array}\right) \cdot \left(\begin{array}{c} V_r \\ V_i \end{array}\right) + \left(\begin{array}{cc} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{array}\right) \cdot \left(\begin{array}{c} I_r \\ I_i \end{array}\right)$$

$$\begin{bmatrix} V_{i,n} \\ V_{q,n} \end{bmatrix} = \begin{bmatrix} 1 - T\omega_{1/2} & -T\Delta\omega \\ T\Delta\omega & 1 - T\omega_{1/2} \end{bmatrix} \begin{bmatrix} V_{i,n-1} \\ V_{q,n-1} \end{bmatrix} + T\omega_{1/2}R_L \begin{bmatrix} I_{i,n-1} \\ I_{q,n-1} \end{bmatrix}$$

Cavity Simulator Live Demo

- Demo of single cavity in pulsed operation
 - E.g., let's check the parameter set we have derived earlier

 $V_{cav} = 31.5 \text{ MV/m} \cdot 1.038 \text{ m} = 32.7 \text{ MV}$ $I_{b0} = 5.8 \text{ mA}$ $\cos(\phi_b) = 1$ $Q_{L,opt} = 5.44 \cdot 10^6$ $P_{flat,min} = 190 \text{ kW}$ $T_{inj} = 923 \ \mu s$

 Let's see for what kind of operation low and high Q₁ values are interesting

Time [s]

LLRF

36

LLRF Systems

Mathieu Omet, 10th of September 2021

LLRF

Types of LLRF Systems

• Analog

- Designed, optimized and built for a specific purpose
- Hard to modify
- Need extra hardware for e.g. data recording

Digital

- More flexibility
 - On how to design the system
 - Always possible to add, change, tweak digital algorithms
- Modern algorithms can be realized
- Remotely maintainable to a large degree

Example of an Analog LLRF System

Types of Digital LLRF Systems

- 19-inch modules ("Pizza box")
 - Individually developed and built hardware
 - Well optimized

- Crate-based systems
 - Of-the-shelf components

Down Converter (uDWC)

- Well optimized cards available
- Highly modular

- Mixed systems
 - Best of both worlds

 $\mu TCA.0\mbox{-}based$ LLRF system at cERL at KEK

LCLS-II prototype LLRF system at FNAL CMTS μ TCA.4-based LLRF systems at European XFEL at DESY

Mathieu Omet, 10th of September 2021

Digitizer (uADC)

System Architecture Example

Distribution of data

Possibly other algorithms, calculations and functionalities

Signal Sampling

Goal: Convert an Analog Signal into a Digital Signal

LLRF

Representation in Quadrature and In-phase

Preserves amplitude and phase information

• If this is fulfilled, a perfect reconstruction of f_{RF} is guarantied.

IF: Intermediate frequency

LPF

Example frequencies

 $f_{RF} = 1.3 \, \text{GHz}$

$$f_{LO} = 1.31 \, \text{GHz}$$

 $\phi_{LO} = 0$ $A_{LO} = 1$ $S_{LO:RF}(t) = \sin(2\pi \cdot f_{LO} \cdot t) \cdot \sin(2\pi \cdot f_{RF} \cdot t)$ **RF:** Radio frequency LO: Local oscillator $= \frac{1}{2} \left(\cos(2\pi \cdot (f_{LO} - f_{RF}) \cdot t) - \cos(2\pi \cdot (f_{LO} + f_{RF}) \cdot t) \right)$ $S_{IF}(t) = \frac{1}{2}\cos(2\pi \cdot f_{IF} \cdot t)$ $f_{IF} = 10 \text{ MHz}$ Mixer S_{RF} SLO

 $\phi_{RF} = 0$

• Nyquist-Shannon theorem: $f_s > 2f_{RF}$

 $S_{RF}(t) = A_{RF} \cdot \sin(2\pi \cdot f_{RF} \cdot t + \phi_{RF})$

 $S_{LO}(t) = A_{LO} \cdot \sin(2\pi \cdot f_{LO} \cdot t + \phi_{LO})$

Sampling methods

- IQ Sampling
- Under sampling & Over sampling

IQ Sampling

$$\begin{pmatrix} I \\ Q \end{pmatrix}_n = \begin{pmatrix} \cos(\Delta\phi_n) & -\sin(\Delta\phi_n) \\ \sin(\Delta\phi_n) & \cos(\Delta\phi_n) \end{pmatrix} \cdot \begin{pmatrix} f_{IF,n+1} \\ f_{IF,n} \end{pmatrix}$$

LLRF

Undersampling and Oversampling

$$\frac{f_s}{f_{IF}} = \frac{M}{L} = m \qquad m = 4 \text{ corresponds to the IQ sampling} \\ \Delta \phi = \frac{2\pi}{m} \qquad m > 2 \text{ corresponds to undersampling} \\ I \\ Q \\ n = \frac{1}{\sin(\Delta \phi + \phi)} \begin{pmatrix} \cos(n\Delta \phi + \phi) & -\cos((n+1)\Delta \phi + \phi) \\ -\sin(n\Delta \phi + \phi) & \sin((n+1)\Delta \phi + \phi) \end{pmatrix} \cdot \begin{pmatrix} y_{IF,n+1} \\ y_{IF,n} \end{pmatrix} \\ I = \frac{2}{m} \sum_{n=0}^{m-1} y_n \cos\left(\frac{2\pi n}{m}\right) \\ I = \frac{2}{m} \sum_{n=0}^{m-1} y_n \sin\left(\frac{2\pi n}{m}\right) \\ Q = \frac{2}{m} \sum_{n=0}^{m-1} y_n \sin\left(\frac{2\pi n}{m}\right) \end{cases}$$

Undersampling and Oversampling

Advantages of undersampling

- Relaxed requirements for ADC due to lower sampling rate (possible cost reduction)
- Relaxed requirements for FPGA due to lower data rate (possible cost reduction)
- Possible to detect IF signals with higher frequency than the ADC sampling rate
- Advantages of oversampling
 - More sample points per period
 - Noise reduction due to averaging in the calculation of I and Q values
 - Choice of IF location in the first Nyquist zone is more flexible (corresponding to e.g. an available analog anti-aliasing low pass filter or to the ADC circuit optimization)

Digital Signal Processing and Implementation

Vector Sum Control of 32 Cavities at the European XFEL

Vector Sum Control

• Drive multiple cavities with one power source

Vector Sum

C1

Field-Programmable Gate Array (FPGA)

• Typically all time-critical digital signal processing is implemented on a FGPA

How to implement algorithms on a FPGA

- Write down the requirements for the firmware
- Make a flow chart and check signal widths
- Create your code
- Create a test bench for your code
- Test and debug your code within the test bench
- Test and debug your code on the target hardware (typically a test setup identical to the production system)
- Deploy the firmware on the production hardware
- If the requirements have changed, revise them and go through all previous steps

Example of Flowchart for a VHDL Algorithm for the FPGA

Ways to Create VHDL Code

- Write directly VHDL source code
 - Absolute control over functionality
 - Allows optimization for different goals (e.g. clock cycles, resources, etc.)
 - Needs good understanding
 - Can take longer to get to the result

VHDL = VHSIC Hardware Description Language VHSIC = Very High Speed Integrated Circuit

- Use e.g. MathWorks Simulink to create VHDL code
 - Allows quick prototyping
 - Good graphical representation of signal flow

Center for Applied

- Less control
- Creates VHDL code, which most times cannot be easily debugged by a human

Test the Code on a Test Bench

		0.000 ns
Name	Value	0 ns 50 ns 100 ns 150 ns
kly lin tb		
i o tb[17:0]	0000000000000000	(0000000X00X00X00X00X00X00X00X00X00X00X00X00X00X000000
a o tb[17:0]	00000000000000000	(0000000,, X00,, X00,, X00,, X00,, X0000000,, X0000000,, X0000000000
i i tb[17:0]	000000000000000000000000000000000000000	
q i tb[17:0]	000000000000000000000000000000000000000	
The start o th	0	
done i th	U C	
Un clk o tb	0	
kly lin inst		
🔓 piclk	0	
le p i start	0	
p i i[17:0]	00000000000000000	0000000
p i g[17:0]	00000000000000000	(0000000,, X00,, X00,, X00,, X00,, X0000000,, X0000000,, X0000000000
sig p o data a[17:0]	σ	
sig p o i tmp[17:0]		
sig p o g tmp[17:0]	000000000000000000000000000000000000000	
p o i[17:0]	000000000000000000000000000000000000000	
p o g[17:0]	000000000000000000000000000000000000000	
la sig p o ena a	U C	
	u .	
sig p o ampso[5:0]		<u>00, 00, 00, 00, 00, 00, 00, 00, 01, 01, </u>
sig_addr_offset[5:0]		
sig_dddi_onset(sig)	TUTALITY	
Un sig p o ena b	υ	

FPGA-based Simulator

- Operating cavities is expensive (e.g, cryo in case of SRF cavities, high power amplifiers, etc.)
- Development and test also possibly with simulators
- Example implemented at KEK
 - <u>Klystron simulator</u> based on two direct lookup tables
 - <u>Cavity simulator</u> based on the time discrete cavity differential equation
 - Test setup realized in a development rack
 - Two μTCA cards (Xilinx Virtex 5 FX)
 - LLRF controller
 - klystron / cavity simulator
 - Feedforward (open loop) and feedback (closed loop) operation modes worked

Kly. / cav. simulator

Controller Theory

Transfer Function

- A Transfer Function is the ratio of the output of a system to the input of a LTI system.
- The X(s) and Y(s) are the Laplace-transform of the input/output signal, respectively.
- Key point: The transfer function H(s) includes information of a system (usually can be seen as a representation of a given system). i.e. if we know the transfer function H(s) of a specified system (assume initial states = 0), we can calculate the output Y(s) by input X(s).

$$H(s) = \frac{Y(s)}{X(s)}, \ Y(s) = H(s) \cdot X(s).$$

Laplace-Transform

• Formula of the Laplace-Transform

Time domainh(t)Impulse response, (time domain representation of a system)Laplace-transform $H(s) = \int_{t=0}^{+\infty} h(t) e^{-st} dt$ Complex freq.
domainH(s)Transfer function

Inverse Laplace
$$f(t) = L^{-1} \{F(s)\} = \frac{1}{2\pi j} \int_{s=\alpha-j\omega}^{\alpha+j\omega} F(s) \cdot e^{st} ds$$

Laplace-Transform

	TABLE 15.1		TABLE 15.2 Laplace transform pairs.*		
	Properties of t	the Laplace trans			
	Property	f(t)	F(s)	f(t)	F(s)
	Linearity	$a_1f_1(t) + a_2f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	$\delta(t)$	1
	Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	<i>u</i> (<i>t</i>)	$\frac{1}{s}$
	Time shift	f(t-a)u(t-a)	$e^{-as}F(s)$	e^{-at}	1
	Frequency shift	$e^{-at}f(t)$	F(s + a)		s + a
	Time differentiation	$\frac{df}{dt}$	$sF(s) - f(0^-)$	t	$\frac{1}{s^2}$
		$\frac{d^2f}{dt^2}$	$s^{2}F(s) - sf(0^{-}) - f'(0^{-})$	t ⁿ	$\frac{n!}{s^{n+1}}$
		$\frac{d^3f}{d^3f}$	$s^{3}F(s) - s^{2}f(0^{-}) - sf'(0^{-})$	te^{-at}	$\frac{1}{(s+a)^2}$
		dt ³ d ⁿ f	$-f''(0^{-})$ $s^{n}F(s) - s^{n-1}f(0^{-}) - s^{n-2}f'(0^{-})$	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
		$\frac{dt^n}{\int_{-\infty}^{t} dt^n}$	$-\cdots - f^{(n-1)}(0^{-})$	sin wt	$\frac{\omega}{s^2 + \omega^2}$
Free d	Time integration	$\int_{0}^{0} f(x) dx$	$\frac{-F(s)}{s}$	cos wt	$\frac{s}{s^2 + \omega^2}$
	Frequency differentiation	tf(t)	$-\frac{d}{ds}F(s)$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
	Frequency integration	$\frac{f(t)}{t}$	$\int_{s} F(s) ds$	$\cos(\omega t + \theta)$	$\frac{s \cos \theta - \omega \sin \theta}{s^2 + \omega^2}$
	Time periodicity	f(t) = f(t + nT)	$\frac{F_1(s)}{1 - e^{-sT}}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(\omega + \omega)^2 + \omega^2}$
	Initial value $f(0)$	f(0)	$\lim_{s \to \infty} sF(s)$	$(s+a)^{-1}$	$(s+a)^2 + \omega^2$ s+a
	Final value	$f(\infty)$	$\lim_{s \to 0} sF(s)$	$e^{-at}\cos\omega t$	$\frac{(s+a)^2}{(s+a)^2+\omega^2}$
Mathieu Omet,	Convolution	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$	*D.G	(A - A (

*Defined for $t \ge 0$; f(t) = 0, for t < 0.

Hot to obtain a Transfer Function (Example: RC circuit)

- TF is related to the differential equation
- The differential equation reads:

Mathieu Omet, 10th of September 2021

Transfer function of RC circuit

Center for

u(t)

Applied Superconducting

Accelerator

Example: RC circuit

• If we know the TF (assume initial state = 0), in principle, we know the system output $u_{c}(t)$ according to the given input u(t) (unit step).

 $U_{c}(s) = -$

63

Frequency response

- It is a measure of magnitude and phase of the output as a function of frequency.
- From TF to transfer function: $H(s) \rightarrow H(j\omega)$.

Frequency response

- If we know H(j ω), we also know H(j 2π ·f)
- And then A(f) & P(f)

$$H(s)|_{s=j\omega} = H(j\omega) = |H(j\omega)|e^{j\Box H(j\omega)} = |H(j2\pi f)|e^{j\Box H(j2\pi f)}$$
Amplitude vs. frequency
Phase vs. frequency

• We can also plot A(f) & P(f), if we know their expressions

Frequency response (Bode plot)

 Bode diagram: plots of the amplitudefrequency and phase-frequency response of the system H(s).

$$H(s)\Big|_{s=j\omega} = H(j\omega) = \left|H(j\omega)\right|e^{j\Box H(j\omega)} = \left|H(j2\pi f)\right|e^{j\Box H(j2\pi f)}$$

LLRF

Bode diagram

• Bode diagram: plots of the amplitudefrequency and phase-frequency response of the system H(s).

Frequency [kHz]

Bode diagram

How about some special case, $\omega = 1/\tau = 1000 \text{ [rad/s]}. f=160 \text{ Hz}$ $\left| H\left(j\frac{1}{\tau}\right) \right| = \frac{\tau}{\sqrt{\left(\frac{1}{\tau}\right)^2 + \left(\frac{1}{\tau}\right)^2}} = \frac{1}{\sqrt{2}}$ bandwidth Y: -3.033 BODE -20^L0 $\Box H\left(j\frac{1}{\tau}\tau\right) = -\arctan\left(\frac{1}{\tau}\tau\right) = -45^{\circ}$ 0.2 0.8 0.4 0.6 Frequency [kHz] $H(j2\pi f)[\deg]$ 45 deg. The half power point is -50 X: 0.16 Y: -45.15 that frequency at which the output power (not -100L voltage) has dropped to 0.2 0.4 0.6 0.8 Frequency [kHz] half of its mid-band value.

LLRF

Mathieu Omet, 10th of September 2021

Still 50 Hz, but...

Phase shift

Steady state output

70

Frequency response

 If we know the frequency response of a system or its bode diagram, then let's consider a sinusoidal signal

Magnitude gain

LLRF

71

Frequency response

• We can simulate this with using Matlab/Simulink $f = \omega/2\pi = 160 \text{ Hz}$

Special case, $\omega = 1/\tau = 1000$ [rad/s].

• The input is a 160 Hz sinusoidal signal

$$\left| H\left(j\frac{1}{\tau}\right) \right| = \frac{\frac{1}{\tau}}{\sqrt{\left(\frac{1}{\tau}\right)^2 + \left(\frac{1}{\tau}\right)^2}} = \frac{1}{\sqrt{2}}$$
$$\Box H\left(j\frac{1}{\tau}\tau\right) = -\arctan\left(1\right) = -45^\circ$$

1

Frequency response

• How about f = 600 Hz ?

If input: $\cos(2\pi \cdot 600t)$, $|H(j\omega)| \square H(j\omega)$ Then output: $|H(j\omega)|\cos(2\pi \cdot 600t + \measuredangle H(j\omega)) \approx \frac{1}{4}\cos\left(2\pi \cdot 600t - \frac{5\pi}{12}\right)$

Example of cavity

Transfer function of a FB system

• Let us go back to the basic control system, now let's review it in the viewpoint of the transfer functions.

LLRF system

- *K*(*s*): Controller. generally, a proportional & integral (PI) controller
- *P*(*s*): Plant you want to control
- F(s): Detector (sensor), to measured the response of the plant

Block diagram transformations

 How to calculate the transfer function of the whole system, if we know the transfer function of each subsystem?

Example

 How to calibrate the transfer function from X(s) to Y(s)?

Mason's rule

 To go a little bit further. In some cases, to calculate the transfer function is not so easy, for example (too many loops):

Mason's rule

Mason's Gain Rule:

- M = transfer function or gain of the system
- M_i = gain of one forward path
- j = an integer representing the forward paths in the system
- $\Delta_j = 1$ the loops remaining after removing path *j*. If none remain, then $\Delta_j = 1$.
- Δ = 1 Σ loop gains + Σ nontouching loop gains taken two at a time Σ nontouching loop gains taken three at a time + Σ nontouching loop gains taken four at a time · · ·

With FB vs. w/o FB

- In the following let's find an answer to the question: "Why de we need feedback?"
- We will do so by evaluating the transfer functions

LLRF

Mathieu Omet, 10th of September 2021

Disturbance Rejection

• In the real case, disturbances exists in the system (not only LLRF system, but almost al of the control system), so the actual system is something like:

LLRF

 Obviously, the existence of the disturbance (or perturbation) will influence the system, but is it same for FB and FF?

 Let's give each component (H(s)) some meaning

• Furthermore, if GP =1, then

Considering the $H(j\omega)$

- The best way is to compare their frequency response or bode plot?
- Bode diagram: plots of the amplitudefrequency and phasefrequency response of the system H(s).

LLRF

Power convertor ripples in RF system

Stability Criteria

- Stability is most important for a feedback system. If the system is not stable, there is no meaning for any efforts.
- The Stability Criteria for a feedback system includes
 - Root locus
 - Solve the characteristic equation
 - Open loop bode plot & Nyquist Criterion
 - Routh–Hurwitz stability criterion

• All of them are important, but...

Stability Criteria (poles position)

• Definition: A stable system is a dynamic system with a bounded response to a bounded input.

We can not try all of the bounded input signal

$$H(s) = \frac{numerator}{denominator} = \frac{b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \dots + a_1 s + a_0}$$

Mathieu Omet, 10th of September 2021
Mathieu Omet, 10th of September 2021

Stability Criteria (poles position)

 $H(s) = \frac{numerator}{denominator} = \frac{b_m s^m + b_{m-1} s^{m-1} + b_{m-2} s^{m-2} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \dots + a_1 s + a_0}$ $= \frac{K(s - z_1)(s - z_2) \cdots (s - z_{n-1})(s - z_n)}{(s - p_1)(s - p_2) \cdots (s - p_{n-1})(s - p_n)}$ $H(s)|_{s=p} = \infty \quad \text{Poles} \qquad H(s)|_{s=z} = 0 \quad \text{zeros}$

A necessary and sufficient condition for a feedback system to be stable is that all the **poles** of the system transfer function have negative real parts.

Example

- The system H (s) should be stable because all of the poles is in the have negative real part.
- The system G(s) should be unstable because some poles have positive real part.

$$H(s) = \frac{s+1.5}{s^3+4s^2+6s+4} = \frac{s-(-1.5)}{[s-(-1+i)]\cdot[s-(-1-i)][s-(-2)]}$$

Three poles: $-1\pm i, -2$
One zeros: -1.5

$$G(s) = \frac{s+1.5}{s^3-2s+4} = \frac{s-(-1.5)}{[s-(1+i)]\cdot[s-(1-i)][s-(-2)]}$$

positive real part
Three poles: $(1\pm i, -2)$
One zeros: -1.5

Example (pole-zero map)

LLRF

Example (pole-zero map)

It is easy to solve the linear

Stability Criteria (bode plot)

- equation, but can not answer questions like "if I increase the gain in K(s), what would happen? The FB system is still stable or not? If not, why it becomes unstable?".
- Furthermore, in some system, the characteristic equation is not like a polynomial, thus it is difficult find out the poles directly (such as system with time delay).

Center for

Superconducting

Stability Criteria (bode plot)

 Still remember the bode plot? It is a very popular method to judge the system stability and also analyze the system performance by its open loop TF.

Stability Criteria (bode plot)

Suitable for bode plot:
1) Minimum phase,
2) SISO system.

Gain Margin and Phase Margin

Minimum phase Non-minimum X phase okay

X

 $P_{cl} = P_{ol} - N,$

Clockwise:-1

Anti-clockwise:+1

N = times to encircle the (-1+0i)

MIMO also okay

More information

Benefits of Nyquist diagram

$$H_{OL}(s) = \frac{0.9(1+0.4s)(1+2.5s)}{(s^2+s+1)(1+1.3s)(1.2s-1)}$$

Bode
$$H_{OL}(j\omega) = |H_{OL}(j\omega)|e^{j \angle H_{OL}(j\omega)}$$

Nyquist $H_{OL}(j\omega) = \operatorname{Re}(H_{OL}(j\omega)) + j \cdot \operatorname{Im}(H_{OL}(j\omega))$

LLRF system

Cavity (detuning=0)

- Cavity is like a parallel resonance circuit.
- First of all, we consider the simplest case: no cross component (detuning=0)

PI controller

 PI control is very popular in the FB control system (& LLRF FB control system)

Lapalce Transform $\int f(t)dt \Leftrightarrow \frac{F(s)}{s}$

Transfer function

Analytical Study (components)

Transfer function

 PI control is very popular in the FB control system (& LLRF FB control system)

 Cavity and detector are a low-pass filters with different bandwidth.

Sys. Components

LLRF

Further Types of Feedback Controller

- Classic feedback controller
 - P: proportional controller output scales with the input error
 - I: integral controller minimizes the steady state error left from the proportional controller correction
 - D: differential controller tries to minimize rapid error changes
- Modern feedback controller
 - E.g. 2x2 MIMO (multiple input multiple output) controller (can do PID and more)
 - Cancellation of a passband mode
 - Cancellation of cross coupling between inputs

 K_{I}

Closed loop

 $s + \omega$

Reference

Example Features of an LLRF System

- Every facility typically has a Personal Protection System (PPS) and most facilities have a Machine Protection System (MPS)
- Since the LLRF system is a sub-system of a facility, it must have interlock capabilities
- Typically hardwired in hardware or firmware
 - E.g., logical 'and' just before the DAC

Exception Prevention and Handling

- The LLRF system should prevent certain exceptions
 - Limiters
 - Maximal setpoint voltage
 - Maximal drive signal amplitude
 - Etc.
- The LLRF system should also include a certain degree of exception handling
 - Algorithms for monitoring or computing parameters and for reacting accordingly
 - Turn off RF drive in case of klystron trip
 - Quench detection
 - Etc.

Operation Close to the Quench Limit

- Quench detection is a common feature of LLRF systems
- If Q_L drops below a predefined limit, the drive is turned off
- Should create interlock for the beam
- RF is turned back on manually or by an automation algorithm

Suppression of Unwanted Passband Modes Passband Modes of

Passband Modes of 9-cell Cavities

 $f_{\pi} = 1300.091 \text{ MHz}$ $f_{8/9\pi} = 1299.260 \text{ MHz}$ $f_{7/9\pi} = 1296.861 \text{ MHz}$ $f_{6/9\pi} = 1293.345 \text{ MHz}$ $f_{5/9\pi} = 1289.022 \text{ MHz}$ $f_{4/9\pi} = 1284.409 \text{ MHz}$ $f_{3/9\pi} = 1280.206 \text{ MHz}$ $f_{2/9\pi} = 1276.435 \text{ MHz}$ $f_{1/9\pi} = 1274.387 \text{ MHz}$

• Implement filter (e.g. Notch filter at ADC) in order to suppress frequency of the $8\pi/9$ -mode

• The sources are Lorentz force detuning and microphonics

Detuning

- Detuning lowers the amplitude / requires more power to reach the same amplitude
- Detuning induces change of phase

Frequency shift due to Lorentz forces: -394 Hz
Detuning Compensation

• Motor tuner

- Slow
- Pre-tune cavity
- Compensation of static detuning
- Piezo tuner
 - Fast
 - Compensation of dynamic detuning (E.g. Lorentz force detuning, etc.)
 - Piezo control is typically part of the LLRF system

Benchmarking the System Performance

- RF stability (VS)
 - Intra train
 - Inter train
- Long term drifts
- Must be better than requirements for (beam) operation

XLLRF_stabmon.xml XFEL.RF/LLRF.DIAGNOSTICS//															×		
XFEL RF Stability Monitor															ļ	Pri	nt
A1.I1		intra p2p	AH1.	1	intra p2p	A2.L1		intra p2p	0.02-	Intra-p	oulse	stabili	ty (blue	e: dA/A	, red:	dP)	
dA/A	0.0101	%	dA/A	0.0168	%	dA/A	0.0064	%									_
dP	0.0022 0.0094 0.0113	deg	dP	0.0457 0.0177 0.2474	deg	dP	0.0010 0.0049 0.0015	deg	0.016-	-							
A3.L2	2	intra p2p	A4.L2	2	intra p2p	A5.L2	2	intra	0.012-	-							
dA/A	0.0074	%	dA/A	0.0063	%	dA/A	0.0067	%	0.008-			8 2 6	*	• • • •	•		
dD	0.0016	dea	dD	0.0008	dea	dD	0.0007	dea	0.006-	•	• • • •	• •	• • •	• * *	° 8 '		
ur	0.0003	aug	ur	0.0018	aog	ur	0.0015	aug	0.002-								_
A6.L3	3	intra p2p	A7.L3	3	intra p2p	A8.L3	;	intra p2p	0-	.0 2.5	5.0 7		12.5	17.5	2	2.5	⊷ 27.5
dA/A	0.0081	%	dA/A	0.0057	%	dA/A	0.0075	%									[m]
dP	0.0017	dea	dP	0.0027	deg	dP	0.0025	dea	0.02-	Pulse	to pul	se sta	bility (blue: d	dA/A, r	red: dP	')
u.	0.0014	3		0.0081	3		0.0016	3] .								_
A9.L3	3	intra p2p	A10.I	.3	intra p2p	A11.L	.3	intra p2p	0.016-	-							
dA/A	0.0076	%	dA/A	0.0070	%	dA/A	0.0074	%	0.012-								_
dP	0.0010	deg	dP	0.0030	deg	dP	0.0016	deg	0.01-								_
	0.0012			0.0020			0.0009		0.008-								
A12.L3		intra p2p	A13.L3		intra p2p	A14.L3		intra p2p	0.004								_
dA/A	0.0064	%	dA/A	0.0062	%	dA/A	0.0076	%	0.002-	80	8 . * *	• •	• • • • • • •	? * * *	** **	••••	
dP	0.0021	deg	dP	0.0009	deg	dP	0.0015	deg	Ő	.0 2.5	5.0 7	.5	12.5	17.5	2	2.5	27.5 [m]
A15.L	.3	intra p2p	A16.I	.3	intra p2p	A17.L	.3	intra p2p	A18.L	.3	intra p2p	A19.L	3	intra p2p	A20.L	.3	intra p2p
dA/A	0.0084	%	dA/A	0.0059	%	dA/A	0.0062	%	dA/A	0.0060	%	dA/A	0.0086	%	dA/A	0.0057	%
dP	0.0015	dea	dP	0.0010	deg	dP	0.0013	dea	dP	0.0019	dea	dP	0.0024	dea	dP	0.0014	dea
u.	0.0020	3		0.0012	3		0.0015	3		0.0026	3		0.0021	3		0.0023	3
A21.L	.3	intra p2p	A22.I	.3	intra p2p	A23.L	.3	intra p2p	A24.L	.3	intra p2p	A25.L	3	intra p2p	A26.L	.3	intra p2p
dAVA	0.0051	%	dA/A	0.0061	%	dA/A	0.0064	%	dA/A	0.0049	%	dA/A	0.0058	%	dA/A	0.0000	%
dP	0.0017	deg	dP	0.0021	deg	dP	0.0011	deg	dP	0.0011	deg	dP	0.0011	deg	dP	0.0000	deg
	0.0030			0.0028			0.0034			0.0028			0.0023			0.0000	

European XFEL: overview of VS stabilities, requirements: $\Delta A/A \le 0.01\%$, $\Delta \Phi \le 0.01$ deg.

Summary and Bibliography

• What you should learn about, when are planning to get involved with LLRF

- Your facility
 - What are the requirements? (e.g. for short time and long-time stability, etc.)
 - How to integrate the LLRF system (e.g. interlock, communication, etc.)
- Theory
 - Cavity
 - RF
 - Signal processing
 - Controller
- Analog hardware
- Digital hardware
- Firmware
- Software
 - E.g. communication, computations, automation, data analysis, data storage, data visualization, user interface, etc.

Thank you very much for your attention! Questions?

- Bibliography
 - S. Pfeiffer, *LLRF Controls and Feedback*, The CERN Accelerator School, 2016
 - S. Sievers et al., Second-sound measurements on a 3 GHz SRF cavity at low acceleration fields, SRF'13, 2013
 - T. Schilcher, Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities, PhD Thesis, 1998
 - S. Simrock et al., Cavity Field Control, LLRF Lecture, 5th LC School, 2010
 - M. Omet, Digital Low Level RF Control Techniques and Procedures Towards the International Linear Collider, PhD Thesis, 2014
 - J. Branlard, LLRF controls and RF operations, SRF 2019 Tutorial, SRF2019, 2019
 - J. Branlard, Superconducting cavity quench detection and prevention for the European XFEL, ICAEPCS'13, 2013
 - L. Doolittle et al., High Precision RF Control for SRF Cavities in LCLS-II, SRF2021, 2017
 - J. Branlard et al., Installation and First Commissioning of the LLRF System for the European XFEL, IPAC17, 2017
 - T. Miura et al., Digital LLRF Control System for cERL, 13th Annual Meeting of Particle Accelerator Society of Japan, 2016
 - T. Hellert et al., Detuning related coupler kick variation of a superconducting nine-cell 1.3 GHz cavity, Phys. Rev. Accel. Beams 21, 042001, 2018
 - D. Kostin, Experience with the Eu-XFEL RF Couplers, AWLC'20, 2020
 - S. Michizono, STF-LLRF system and its study plan, LCWS'12, 2012
 - A. Mielczarek et al., *uTCA-based Controller*, MIXDES 2011, 2011
 - S. Fukuda, KEK HLRF Status and S1- global, LCWS'08, 2008
 - C. Pagani et al., Test results of the international S1-global cryomodule, Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan, 2011
 - F. Qiu, Tutorial on control theory, 10th International Accelerator School for Linear Colliders, Japan, 2016
 - M. Omet, Status Update of the European XFEL, Seminar at KEK, 2019
 - M. Omet et al., High-gradient near-quench-limit operation of superconducting Tesla-type cavities in scope of the International Linear Collider, Phys. Rev. ST Accel. Beams 17, 072003, 2014