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Disclaimer

• This lecture will give only a rough overview, it is incomplete by its nature
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Introduction
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What does LLRF stand for?
What is it about?

• Low Level Radio Frequency

• The goal: control the amplitude and phase of electro-magnetic fields within 
cavities
• Required at a wide range of facilities, from small test facilities to large scale 

accelerators

• These fields can have high amplitudes and high frequencies

• Thus down-conversion to small amplitudes for detection is applied
• (and in some cases also a down-conversion to low frequencies, while preserving 

amplitude and phase information, is applied) 
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Superconducting and Normal 
Conducting Cavities

• Frequency ranges 
from MHz to tens 
of GHz
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Modes of Operation

• Pulsed mode
• Short Pulse mode (SP)

• Duty factor of e.g. 1%
• Long Pulse mode (LP)

• Duty factor of 10% to 50%
• Only a certain portion of time is useable 

for beam acceleration

• Continuous Wave (CW)
• Continuous RF field
• Duty factor of 100%
• Beam can be accelerated all the time
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Most basic layout of an RF system

• Open loop operation
• Controller creates drive signal 

corresponding to a set point

• Signal is amplified

• Signal is coupled into the cavity

• Signal is coupled out of the cavity

• Signal is detected by the controller
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Most basic layout of an RF system

• Closed loop operation
• Controller creates drive signal 

corresponding to a set point

• Signal is amplified

• Signal is coupled into the cavity

• Signal is coupled out of the cavity

• Signal is detected by the controller

• Controller compares signal to the set 
point and adjusts the drive signal 
accordingly
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Most basic layout of an RF system

• Let’s take a look at the cavity first
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Cavity Theory
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Cavity modeling:
RCL model
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• Electric circuit
• Resistor R

• Inductor L

• Capacitor C

• Forms a harmonic oscillator



Cavity modeling:
Quality factor in general
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Resonance frequency Stored energy

Dissipated power



Cavity modeling:
Unloaded quality factor

• Assumes losses only due to surface resistance
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Capacitance Square of amplitude of oscillating voltage

ResistanceTime period of an RF cycle

𝜔0 = 2𝜋𝑓0



Cavity modeling:
External quality factor

• Accounts for external losses (e.g. via the power coupler)
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Dissipated power in
all external devices



Cavity modeling:
Loaded quality factor

• Accounts for all losses
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In case of SC cavities Q0 is several
orders of magnitude larger than Qext.
Thus, QL is in the same order as Qext.



Cavity modeling:
Definition of the Loaded Quality Factor

• Add transition line

• Impedance Zext is 
like a parallel 
resistor to R
(characteristic 
impedance of a 
coaxial cable: 50 Ω)

• Both can be 
replaced by the 
loaded shunt 
impedance RL
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R/Q0 depends only on ω0, C, and L,
which means it depends only on the
cavity geometry and not the surface
resistance.



Cavity modeling:
Definition of the Loaded Quality Factor

• The shunt impedance Rsh depends on the dissipated power

• Includes factor ½ of the time average

• Definition of normalized shunt impedance
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Cavity modeling:
Definition of the Loaded Quality Factor

• Coupling between 
cavity and 
transmission line
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QL can be manipulated by 
changing the coupling 𝛃

And with this the cavity 
bandwidth



Solutions for Changing the Coupling

• Change input depth via 
movable input coupler 
antenna

• Change angle of plate of 
waveguide reflector
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Pulsed Operation with Beam Loading
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Beam transient time

• Without beam • With beam



Derivation of Filling and 
Flattop Powers
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Derivation of Filling and 
Flattop Powers
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One particular solution can be found with

Φ is the angle between the generator current 
and the resonator voltage



Derivation of Filling and 
Flattop Powers
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with

The particular solution is also called a stationary solution. 
If the generator frequency ω is very close to the 
resonance frequency ω0, the following approximation can 
be done:

where



Derivation of Filling and 
Flattop Powers
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The frequency dependency of the amplitude is known as the Lorentz curve

Bandwidth of the cavity is defined by the -3 dB point



Derivation of Filling and 
Flattop Powers
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The general solution is:

since One can approximate:

for

with



Derivation of Filling and 
Flattop Powers
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We would like to have a constant voltage over the flattop



Derivation of Filling and 
Flattop Powers
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Parameter Value

Filling time 923 μs

Beam current 5.8 mA

QL 5.44E6

Beam transient time



Derivation of Filling and 
Flattop Powers
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Derivation of Filling and 
Flattop Powers
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• One can stay at a single working point of the power amplifier throughout 
the whole RF pulse 

Non-linear behavior of a klystron (red curve)

Beam transient time



Derivation of Filling and 
Flattop Powers
• Set of equations for finding optimal parameters
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The optimal coupling βopt

Minimum power for maintaining the cavity voltage

Optimum tuning angle

For superconducting cavities one can simplify 

Example set of parameter



Detuned Cavity with Beam Loading
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In reality cavities are detuned by the tuning angle Φ. The sources are Lorentz force detuning and microphonics.  



Cavity Differential Equation 
Continues in Time
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Differential equation for a driven LCR circuit

good approximation, since

The cavity is a weakly damped system

Driving current Ig and Fourier component Ib of pulsed beam are harmonic with time dependence           .
Therefore, we separate the fast RF oscillation from the real and imaginary parts of the field vector.

Insertion in equation above and omission of the second-order time derivatives of V yields…



Cavity Differential Equation 
Continues in Time
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… the first-order differential equation for the envelope:

with
cavity bandwidth

cavity detuning

In state space formalism

RF signal

Envelope



Cavity Differential Equation 
Continuous and Discreate in Time
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Cavity Simulator Live Demo

• Demo of single cavity
in pulsed operation
• E.g., let’s check the parameter set 

we have derived earlier

• Let’s see for what kind of 
operation low and high QL values 
are interesting
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LLRF Systems
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Types of LLRF Systems

• Analog
• Designed, optimized and built for a specific purpose

• Hard to modify

• Need extra hardware for e.g. data recording

• Digital
• More flexibility

• On how to design the system

• Always possible to add, change, tweak digital algorithms

• Modern algorithms can be realized

• Remotely maintainable to a large degree
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Example of an Analog LLRF System
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Types of Digital LLRF Systems
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• 19-inch modules (“Pizza box”)
• Individually developed and 

built hardware

• Well optimized

• Crate-based systems
• Of-the-shelf components

• Well optimized cards 
available

• Highly modular

LCLS-II prototype LLRF system at FNAL CMTS

• Mixed systems
• Best of both worlds

µTCA.0-based LLRF system at cERL at KEKµTCA.4-based LLRF systems at European XFEL at DESY

Down converter



System Architecture Example

Mathieu Omet, 10th of September 2021 LLRF 41

Signal processing
Firmware on FPGA

Communication and 
algorithms

Software on local CPU

Remote PC
Software

Control systemRemote PC
Software

Signal acquisition
ADC

Drive generation
DAC

• Monitoring
• Change settings
• Data acquisition

• Data acquisition
• Long time archive

• Distribution of data

• Digital filter
• Feedback
• Generation of digital drive signal
• Possibly other algorithms, calculations and functionalities 

From cavity To amplifier

LAN

LANLAN



Signal Sampling
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Goal: Convert an Analog Signal into 
a Digital Signal
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Representation in 
Quadrature and In-phase
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Down Conversion in Frequency
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• Nyquist-Shannon theorem: 𝑓𝑠 > 2𝑓𝑅𝐹
• If this is fulfilled, a perfect reconstruction of 𝑓𝑅𝐹 is guarantied.

• Preserves amplitude and phase information

RF: Radio frequency
LO: Local oscillator
IF: Intermediate frequency

SRF SLO

SIFLPF

Mixer

𝑓𝑅𝐹 = 1.3 GHz

𝑓𝐿𝑂 = 1.31 GHz

𝑓𝐼𝐹 = 10 MHz

Example frequencies



Sampling methods

• IQ Sampling

• Under sampling & Over sampling
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IQ Sampling
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Undersampling and Oversampling
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Undersampling and Oversampling
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• Advantages of undersampling
• Relaxed requirements for ADC due to lower sampling rate (possible cost reduction)

• Relaxed requirements for FPGA due to lower data rate (possible cost reduction)

• Possible to detect IF signals with higher frequency than the ADC sampling rate

• Advantages of oversampling
• More sample points per period

• Noise reduction due to averaging in the calculation of I and Q values

• Choice of IF location in the first Nyquist zone is more flexible (corresponding to e.g. 
an available analog anti-aliasing low pass filter or to the ADC circuit optimization)



Digital Signal Processing
and Implementation
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Vector Sum Control of 32 Cavities at 
the European XFEL
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Vector Sum Control
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C1 C2 C3 C4 C5 C6 C7 C8

Vector Sum

Read back value

Set Point

• Drive multiple cavities with one power source

Re

Im VS

C1

C2
C3

C4
C5

C6

C7
C8



Field-Programmable Gate Array 
(FPGA)

• Typically all time-critical digital signal processing is implemented on a FGPA
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How to implement algorithms on a 
FPGA
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• Write down the requirements for the firmware

• Make a flow chart and check signal widths

• Create your code

• Create a test bench for your code

• Test and debug your code within the test bench

• Test and debug your code on the target hardware 

(typically a test setup identical to the production 

system)

• Deploy the firmware on the production hardware

• If the requirements have changed, revise them 

and go through all previous steps

Example of Flowchart for a VHDL Algorithm for the FPGA



Ways to Create VHDL Code 
• Write directly VHDL source code

• Absolute control over functionality

• Allows optimization for different goals (e.g. 
clock cycles, resources, etc.)

• Needs good understanding

• Can take longer to get to the result
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• Use e.g. MathWorks Simulink to create 
VHDL code
• Allows quick prototyping

• Good graphical representation of signal flow

• Less control

• Creates VHDL code, which most times cannot 
be easily debugged by a human

VHDL = VHSIC Hardware Description Language
VHSIC = Very High Speed Integrated Circuit



Test the Code on a Test Bench
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FPGA-based Simulator
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• Operating cavities is expensive (e.g, cryo in case of SRF 
cavities, high power amplifiers, etc.)

• Development and test also possibly with simulators

• Example implemented at KEK
• Klystron simulator based on two direct lookup tables

• Cavity simulator based on the time discrete 
cavity differential equation

• Test setup realized in a development rack

• Two μTCA cards (Xilinx Virtex 5 FX)
- LLRF controller
- klystron / cavity simulator

• Feedforward (open loop)
and feedback (closed loop) 
operation modes worked

Time [ms]

A
m

p
lit

u
d

e 
[a

.u
.]

Kly. / cav. sim. output

LLRF controller Kly. / cav. simulator



Controller Theory
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Transfer Function

• A Transfer Function is the ratio of the output of a system to the input of a LTI system. 

• The X(s) and Y(s) are the Laplace-transform of the input/output signal, respectively.

• Key point: The transfer function H(s) includes information of a system (usually can be 
seen as a representation of a given system). i.e. if we know the transfer function H(s) of 
a specified system (assume initial states = 0), we can calculate the output Y(s) by input 
X(s). 
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Laplace-Transform

• Formula of the Laplace-Transform
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Laplace-Transform
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Hot to obtain a Transfer Function 
(Example: RC circuit)

• TF is related to the differential equation

• The differential equation reads:
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Example: RC circuit
• If we know the TF (assume initial state = 0), 

in principle, we know the system output 
uc(t) according to the given input u(t) (unit 
step).
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Example: RC circuits

• Go back to the differential equation:
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Frequency response

• It is a measure of 
magnitude and 
phase of the output 
as a function 
of frequency.

• From TF to transfer 
function: H(s)→H(jω). 
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Frequency response

• If we know H(jω), we also know H(j2π∙f)

• And then A( f ) & P( f )

• We can also plot A( f ) & P( f ), if we know their expressions
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Frequency response (Bode plot)

• Bode diagram: plots 
of the amplitude-
frequency and 
phase-frequency 
response of the 
system H(s). 
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We called these two plots “Bode plots”



Bode diagram

• Bode diagram: plots 
of the amplitude-
frequency and 
phase-frequency 
response of the 
system H(s). 
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Bode diagram
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How about some special case, 

ω =1/τ = 1000 [rad/s]. f=160 Hz

The half power point is 

that frequency at which 

the output power (not

voltage) has dropped to 

half of its mid-band value. 

2 2
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1 1
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Frequency response

• If we know the 
frequency response 
of a system or its 
bode diagram, then 
let’s consider a 
sinusoidal signal
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E.g. a 50 Hz sinewave 

Magnitude gain Phase shift
Still 50 Hz, but…

Steady state output

50 Hz

Still 50 Hz

(steady state)



( )

( ) ( )( )

: cos 2 160 ,

1
: cos 2 160 cos 2 160

42
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Frequency response

• We can simulate 
this with using 
Matlab/Simulink

• The input is a 
160 Hz 
sinusoidal signal
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Special case, 

ω =1/τ = 1000 [rad/s].

f = ω/2π=160 Hz

1
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𝐼𝑓 𝑖𝑛𝑝𝑢𝑡: cos 2𝜋 ⋅ 600𝑡 ,

𝑇ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡: 𝐻 𝑗𝜔 cos 2𝜋 ⋅ 600𝑡 + ∡𝐻 𝑗𝜔 ≈
1

4
cos 2𝜋 ⋅ 600𝑡 −

5𝜋

12

Frequency response

• How about f = 600 Hz ?

72
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Example of cavity 

• Bode diagram 
(Plots of the 
amplitude-
frequency and 
phase-
frequency 
response of 
the system)
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• Magnitude vs. frequency

• Phase vs. frequency
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Bode plot (SC vs. NC)
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Ex. 1 Bode Plot (SC)

• 𝜔0 = 1.3 ∙ 2𝜋 [𝑟𝑎𝑑/𝑠]
• 𝑄1 = 1.3 × 106

• 𝐵𝑊1 = 100 [𝐻𝑧]

Ex. 2 Bode Plot (NC)

• 𝜔0 = 1.3 ∙ 2𝜋 [𝑟𝑎𝑑/𝑠]
• 𝑄2 = 7000
• 𝐵𝑊2 = 186 [𝑘𝐻𝑧]

We can clearly see that the 

bandwidth is related to the Q 

value.

( )0 0 0
3 0 0.5, ,

2 2
dB

f f
BW f Half BW

Q Q





= = =

𝐵𝑊1 = 100 [𝐻𝑧]

𝐵𝑊2 = 186 [𝑘𝐻𝑧]

𝑄2 = 7000
𝑄1 = 1.3 × 106

Resonance frequency of a cavity (1.3 GHz)



Transfer function of a FB system

• Let us go back to the basic control system, now let’s review it in the 
viewpoint of the transfer functions. 
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P(s)K(s)

F(s)

Reference

Loop

Plant
FB

Controller

Sensor

Reference

Loop

TF representationBasic control system

LLRF system

• K(s): Controller. generally, a proportional & integral (PI) controller

• P(s): Plant you want to control

• F(s): Detector (sensor), to measured the response of the plant



Block diagram transformations

• How to calculate the 
transfer function of 
the whole system, if 
we know the transfer 
function of each 
subsystem?
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





Serial
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Example

• How to calibrate 
the transfer 
function from 
X(s) to Y(s)?
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Loop
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( )1G s ( )2G s
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Serial
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Feedback
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Y s
G s G s
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=

Forward gain=P(s)K(s)

( )

( )

( )

( ) ( )
1

2 11 1

Y s G s forward gain

X s G s G s open loop gain
= =

+ +



Mason’s rule

• To go a little bit 
further. In some 
cases, to calculate 
the transfer 
function is not so 
easy, for example 
(too many loops):
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Mason’s rule
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K(s) P(s)

Q(s)

M(s)

F(s)

Q(s)

R(s)

D(s)

Y(s)

N(s)



With FB vs. w/o FB

• In the following let’s 
find an answer to 
the question: “Why 
de we need 
feedback?”

• We will do so by 
evaluating the 
transfer functions

Mathieu Omet, 10th of September 2021 LLRF 80

FB w/o FB

Plant
FF

Controller

Sensor

Plant
FB

Controller

Sensor

Ref

P(s)K(s)

F(s)

Loop

R(s)

Y(s)
P(s)

F(s)

Y(s)
FF(s)



Disturbance Rejection

• In the real case, 
disturbances 
exists in the 
system (not only 
LLRF system, but 
almost al of the 
control system), 
so the actual 
system is 
something like:
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P(s)K(s)

F(s)

Loop

R(s)

Y(s)
P(s)

F(s)

Y(s)
FF

P(s)K(s)

F(s)

Loop

R(s)

Y(s)

D(s): disturbance

P(s)

F(s)

Y(s)FF

D(s): disturbance

How to evaluate 

the influence of 

disturbances? 



Disturbance Rejection

• Obviously, the 
existence of the 
disturbance (or 
perturbation) will 
influence the 
system, but is it 
same for FB and FF?
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P(s)K(s)

F(s)

Loop

R(s)

Y(s)

D(s): disturbance
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F(s)
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Y(s)( )

( ) ( ) ( )1

P s

F s P s K s+ D(s)
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( )P s

w/o FBWith FB



Disturbance Rejection

• Let’s give each 
component (H(s)) 
some meaning
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Disturbance Rejection

• Furthermore, 
if GP =1, then
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Disturbance Rejection

• The best way is to 
compare their 
frequency response or 
bode plot?

• Bode diagram: plots of 
the amplitude-
frequency and phase-
frequency response of 
the system H(s). 
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Power convertor ripples in RF system

Mathieu Omet, 10th of September 2021 LLRF 86

RF

Cavity

RF

Source

HV Power

Converter

AC

Low level RF 

system

RF

RF to Beam Energy

Master Oscillator

Feedback

50-60 Hz

Pick-up

Low energy beamHigh energy beam

Coupler

DC to RF

d(t)=sin(2π∙300t) 

Low level RF (sensor & controller)

That d(t)=sin(2π∙300t) 

will be suppressed by 

LLRF feedback. 

Plant: P(s)



Stability Criteria

• Stability is most important for a feedback system. If the system is not stable, 
there is no meaning for any efforts.

• The Stability Criteria for a feedback system includes
• Root locus 

• Solve the characteristic equation

• Open loop bode 
plot & Nyquist 
Criterion

• Routh–Hurwitz 
stability criterion

• All of them are important, but…
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Stability criteria 

Open loop-based Close loop-based

Nyquist Criterion Bode plot Characteristic equation Routh–Hurwitz

Root locus 



Stability Criteria (poles position)

• Definition: A stable system is a dynamic system with a bounded response to 
a bounded input.
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X(s)

Y(s)

( )H s

𝐻 𝑠 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
=
𝑏𝑚𝑠

𝑚 + 𝑏𝑚−1𝑠
𝑚−1 + 𝑏𝑚−2𝑠

𝑚−2 +⋯𝑏1𝑠 + 𝑏0
𝑠𝑛 + 𝑎𝑛−1𝑠

𝑛−1 + 𝑎𝑛−2𝑠
𝑛−2 +⋯𝑎1𝑠 + 𝑎0

Characteristic equation

bounded input
Stable

Unstable

We can not try all of the bounded input signal

time time

x(t) y(t)



Stability Criteria (poles position)

89

𝐻 𝑠 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
=
𝑏𝑚𝑠

𝑚 + 𝑏𝑚−1𝑠
𝑚−1 + 𝑏𝑚−2𝑠

𝑚−2 +⋯𝑏1𝑠 + 𝑏0
𝑠𝑛 + 𝑎𝑛−1𝑠

𝑛−1 + 𝑎𝑛−2𝑠
𝑛−2 +⋯𝑎1𝑠 + 𝑎0

=
𝐾 𝑠 − 𝑧1 𝑠 − 𝑧2 ⋯ 𝑠 − 𝑧𝑛−1 𝑠 − 𝑧𝑛
𝑠 − 𝑝1 𝑠 − 𝑝2 ⋯ 𝑠 − 𝑝𝑛−1 𝑠 − 𝑝𝑛

A necessary and sufficient condition for a feedback system to 

be stable is that all the poles of the system transfer function 

have negative real parts. 

Poles zeros

Complex number

X(s)

Y(s)

( )H s

( )
s p

H s
=
=  ( ) 0

s z
H s

=
=



Example

• The system H (s) 
should be stable 
because all of the 
poles is in the have 
negative real part. 

• The system G(s) 
should be unstable 
because some poles 
have positive real 
part. 
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Example (pole-zero map)
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H (s): stable 

G (s): unstable poles 

Real

Imag

0

Unstable: right half plane 

poles (RHP poles)



Example (pole-zero map)
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G(s)

Step

H(s)

Go to infinite 

(unstable)

Has RHP poles

No RHP poles



Stability Criteria (bode plot)

• It is easy to solve the linear 
equation, but can not answer 
questions like “if I increase the gain 
in K(s), what would happen? The FB 
system is still stable or not? If not, 
why it becomes unstable? ”.

• Furthermore, in some system, the 
characteristic equation is not like a 
polynomial, thus it is difficult find 
out the poles directly (such as 
system with time delay).
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Stability Criteria (bode plot)

• Still remember the 
bode plot? It is a 
very popular 
method to judge the 
system stability and 
also analyze the 
system performance 
by its open loop TF.
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The closed loop is stable, if the open loop gain is less than 1 (0 dB) at 

a phase of the open loop of -180 degree (or +180, -540, etc.).

Stability Criteria (bode plot)

• Suitable for 
bode plot: 
1) Minimum 
phase, 
2) SISO 
system.
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Gain Margin and Phase Margin
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Stability Criteria (Nyquist diagram)

• Benefits of Nyquist diagram
• More information

• Non-minimum 
phase okay

• MIMO also okay
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LLRF system
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PlantController

Sensor

Plant: Cavities, power source, 

RF Gun, antenna,…

Sensor: Phase detector, 

amplitude discriminator, 

or FPGA  

Controller: Electrical control  

phase shifter or attenuator, 

FPGA

ADC: LTC 2208

Xillinx Virtex5 FPGA

ADC & DAC Interface

Digital I/O

uTCA Digital Board

Cavity

FPGA

Target: Stabilize 

the field inside 

the cavity 



Cavity (detuning=0)

• Cavity is like a 
parallel resonance 
circuit.

• First of all, we 
consider the 
simplest case: no 
cross component 
(detuning=0)
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PI controller

• PI control is very 
popular in the FB 
control system 
(& LLRF FB 
control system)

Mathieu Omet, 10th of September 2021 LLRF 100

PI Controller

Transfer function( )
( )

( )
1 I

P

Y s K
K s K

E s s

 
= = + 

 

( )e t
PK

IK

( )y t( )PK e t



( ) ( ) ( )P P Iy t K e t K K e t dt=  +   

( ) ( )
( )

P P I

E s
Y s K E s K K

s
=  +  

( )
( )

Lapalce Transform

F s
f t dt

s


ADC: LTC 2208

Xillinx Virtex5 FPGA

ADC & DAC Interface

Digital I/O

uTCA Digital Board

Usually performed in 

the FPGA (or DSP)

1/ s



Analytical Study (components)

• PI control is very 
popular in the FB 
control system (& 
LLRF FB control 
system)

• Cavity and 
detector are a 
low-pass filters 
with different 
bandwidth.
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Further Types of Feedback Controller

• Classic feedback controller
• P: proportional controller output 

scales with the input error
• I: integral controller minimizes the 

steady state error left from the 
proportional controller correction

• D: differential controller tries to 
minimize rapid error changes

• Modern feedback controller
• E.g. 2x2 MIMO (multiple input 

multiple output) controller (can do PID 
and more)
• Cancellation of a passband mode
• Cancellation of cross coupling between 

inputs
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Example Features of an LLRF System
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Interlock

• Every facility typically has a Personal Protection System (PPS) and most 
facilities have a Machine Protection System (MPS)

• Since the LLRF system is a sub-system of a facility, it must have interlock 
capabilities

• Typically hardwired in hardware or firmware
• E.g., logical ‘and’ just before the DAC
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AND DAC
Interlock signal

Digital drive signal

Digital drive signal Analog drive signal



Exception Prevention and Handling

• The LLRF system should prevent certain exceptions
• Limiters

• Maximal setpoint voltage

• Maximal drive signal amplitude

• Etc.

• The LLRF system should also include a certain degree of exception handling
• Algorithms for monitoring or computing parameters and for reacting accordingly

• Turn off RF drive in case of klystron trip

• Quench detection

• Etc.
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Operation Close to the Quench Limit

• Quench detection is a 
common feature of 
LLRF systems

• If QL drops below a 
predefined limit, the 
drive is turned off

• Should create interlock 
for the beam

• RF is turned back on 
manually or by an 
automation algorithm 
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Suppression of Unwanted Passband 
Modes
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• Implement filter (e.g. Notch filter at ADC) in order 
to suppress frequency of the 8π/9-mode

Passband Modes of 9-cell Cavities



Detuning
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• Detuning lowers the amplitude / requires more power to 
reach the same amplitude

• Detuning induces change of phase 

• The sources are Lorentz force detuning and microphonics



Detuning Compensation
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• Motor tuner
• Slow
• Pre-tune cavity
• Compensation of 

static detuning

• Piezo tuner
• Fast
• Compensation of 

dynamic detuning 
(E.g. Lorentz force 
detuning, etc.)

• Piezo control is 
typically part of the 
LLRF system

Piezos



Benchmarking the System 
Performance

• RF stability (VS)
• Intra train

• Inter train

• Long term drifts

• Must be better 
than requirements 
for (beam) 
operation
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KEK STF: QL = 2E7

KEK STF: QL,cav1 = 9E6, QL,cav2 = 3E6
European XFEL: overview of VS stabilities, 
requirements: ΔA/A ≤ 0.01%, ΔΦ ≤ 0.01 deg.



Summary and Bibliography
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Summary

• What you should learn about, when are planning to get involved with LLRF
• Your facility

• What are the requirements? (e.g. for short time and long-time stability, etc.)
• How to integrate the LLRF system (e.g. interlock, communication, etc.)

• Theory
• Cavity
• RF
• Signal processing
• Controller

• Analog hardware
• Digital hardware
• Firmware
• Software

• E.g. communication, computations, automation, data analysis, data storage, data 
visualization, user interface, etc.
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