
Introduction to LLRF 

1. Abstract 

In this lecture an introduction to Low Level 

Radio Frequency (LLRF) is given. The lecture is 

divided into two parts. First, after explaining 

the purpose of LLRF, an introduction to the 

theoretical background is given. This covers the 

modeling of accelerating RF cavities, the 

deduction of fundamental equations, and short 

peaks into signal processing and controller 

theory. This part also includes a demo with a 

cavity simulator, to give the listener a better 

feeling, on how a basic system behaves. The 

second part of the lecture focuses on the 

architecture of LLRF systems, actual 

applications, and real-world examples. At the 

end of the lecture, the listener should have a 

good idea what LLRF is about and what path to 

follow, if he or she wants to get involved with 

this topic. 

2. Introduction 

LLRF stands for Low Level Radio Frequency. 

The goal is to control RF fields withing cavities. 

Depending on the application, the requirements 

on the LLRF system vary drastically. E.g., in a 

single cavity vertical test stand, it is important 

to control the amplitude, but the phase basically 

does not matter. On the other hand, in a particle 

accelerator both, amplitude and phase have to 

be controlled precisely. Furthermore, there are 

different types of cavities, such as normal 

conducting (NC) cavities and superconducting 

radio frequencies (SRF) cavities. Depending on 

the application, the frequencies are different, 

ranging typically from several MHz to tens of 

GHz. 

Especially in SRF cavities, voltages of several 

tenths of MV are common. Such high fields are 

impossible to detect directly. Thus, only a very 

small fraction of the field is coupled out via a 

pickup antenna. Its signal is then sent to the 

LLRF system for detection. Typically, the input 

power to the LLRF system is less than 1 W, 

hence Low Level RF. 

Depending on the purpose of the facility, 

cavities are operated in a specific mode. There 

are continuous wave (CW) machines, in which a 

continuous RF field is maintained within the 

cavities. Its duty factor is 100% and, if the 

facility is a particle accelerator, beam can be 

accelerated all the time. On the other hand, 

cavities can be operated in pulsed mode. This 

can be distinguished into short pulse mode (SP) 

and long pulse mode (LP). In SP mode the duty 

factor is typically about 1%, meaning only 

during 1% of the time RF is fed into the cavity. 

Beam acceleration is possible only during a 

portion of this time. In LP mode the duty factor 

is typically 10% to 50%. 

 

The most basic setup including an LLRF system 

is shown Figure 1. It comprises the LLRF 

system, which generates corresponding to a set 

setpoint a drive signal. This is fed into an 

amplifier, which amplifies it. It is then fed into 

a cavity. A small fraction of the RF is coupled 

out and sent back to the LLRF system, where it 

is detected. This is called an open-loop 

operation. By implementing a feedback 

controller, it is possible to perform closed loop 

operation. In this case the detected pickup 

signal is compared against the given setpoint. 

Based on its difference the drive signal is 

computed and generated.  



 

Figure 1: Most basic setup including an LLRF 

system. 

 

3. LLRF System Overview 

In order to be able to decide how to design and 

build an LLRF system, one has to understand 

first the nature of the object, which shall be 

controlled – in this case a SRF cavity. A cavity 

is a resonator, which can be modeled in a first 

approximation with an RCL electric circuit. It is 

shown in Figure 2. 

 

Figure 2: RCL circuit. 

Before we explore the RCL model, let us define 

an important property of the cavity: the quality 

factor. In general, it is defined as the ratio 

between the energy stored in the cavity and the 

power dissipated from the cavity per RF cycle. 

 

𝑄 =
2𝜋𝑓0𝑊

𝑃𝑑
 

 

There are different ways power can dissipate 

from a cavity, e.g. via losses due to the surface 

resistance. In this case the quality factor is 

called unloaded quality factor and is defined as 
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where 𝑇 is the time period of an RF cycle, 𝐶 

the capacitance, 𝑉0  the amplitude of the 

oscillating voltage, and 𝑅 the resistance. With 
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we can rewrite the equation to: 

 

𝑄0 = 𝜔0𝑅𝐶 =
𝑅

𝐿𝜔0
=

𝜔0𝑊
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   . 

 

Beside the losses due to the surface resistance, 

there are external losses, e.g. via the power 

coupler. In this case the quality factor is called 

the external quality factor: 

 

𝑄𝑒𝑥𝑡 =
𝜔0𝑊

𝑃𝑒𝑥𝑡
 

 

When combining all losses, the quality factor is 

called the loaded quality factor: 

 

𝑄𝐿 =
𝜔0𝑊

𝑃𝑡𝑜𝑡
 

 

In this case the total dissipated power is 𝑃𝑡𝑜𝑡 =

𝑃𝑑𝑖𝑠𝑠 + 𝑃𝑒𝑥𝑡. One can compute the loaded quality 

factor as follows: 
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In the case of SRF cavities 𝑄0 is several orders 

of magnitude larger than 𝑄𝑒𝑥𝑡. Thus, 𝑄𝐿 is in 

the same order as 𝑄𝑒𝑥𝑡. 

In order to reflect the real world better, we have 

to add a transition line to the RCL model, as 

shown in Figure 3.  

 

Figure 3: RCL circuit with transition line [1]. 

This models e.g. the cable connecting the power 

amplifier to the cavity. It is represented as the 

impedance 𝑍𝑒𝑥𝑡 and is like a parallel resistor to 

𝑅 . The characteristic impedance of a coaxial 

cable is 50 Ω. Both can be replaced by the shunt 

impedance: 

 

𝑅𝐿 =
1

𝑅
+

1

𝑍𝑒𝑥𝑡
 

 

We can rewrite 𝑄0 = 𝜔0𝑅𝐶 =
𝑅

𝐿𝜔0
=

𝜔0𝑊

𝑃𝑑𝑖𝑠𝑠
 to: 
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Looking at this, we can see that 
𝑅

𝑄0
 depends 

only on 𝜔0 , 𝐶 , and 𝐿 . This means that it 

depends only on the cavity geometry and not on 

the surface resistance. 

From 
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we can see that the shunt impedance 𝑅𝑠ℎ 

depends on the dissipated power. Comparing it 

to the RCL resistance 𝑅𝑠ℎ, a factor of 
1

2
 of the 

time average has to be included: 
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With this the normalized shunt impedance can 

be defined as: 
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Furthermore, we can define the coupling 

between the cavity and the transmission line: 

 

𝛽 =
𝑅

𝑍𝑒𝑥𝑡
 

 

With 
1

𝑅𝐿
=

1

𝑅
+

1

𝑍𝑒𝑥𝑡
 we can rewrite this as: 

 

𝑅𝐿 =
𝑅

1 + 𝛽
 

 

Using the definition of the shunt impedance we 

get the two following equations: 

 

𝑄𝐿 =
𝑄0

1 + 𝛽
 

 

and 

 

𝜔1 2⁄ =
𝜔0

2𝑄𝐿
 

 

From this we can learn that the loaded quality 

factor of a cavity 𝑄𝐿  can be manipulated by 

changing the coupling 𝛽. Furthermore, at the 

same time the half-bandwidth 𝜔1 2⁄  is 

manipulated. This fact is exploited at facilities. 

Two possible ways are changing the insertion 

depth of the input coupler antenna or the angle 

of a reflector plate inside an RF waveguide. 

 



For the following we will focus on the pulsed 

operation mode with beam loading. During 

every pulse RF is fed into the cavity in order to 

charge it up. This time period is called filling or 

fill time. It is followed by a time period, which is 

called flattop. During this time the amplitude 

and phase of the RF inside the cavity are kept 

constant. The flattop is the time period 

designated for beam acceleration. After the 

flattop, the RF drive of the cavity is shut off. The 

RF field inside the cavity decays, thus it is 

called decay. A schetch of such an RF pulse is 

shown in Figure 4. 

 

 

Figure 4: Cavity and drive amplitudes over time 

during an RF pulse [2]. 

Now let us assume that we would inject a beam 

(e.g. a train of electron bunches) into the cavity 

just at the beginning of the flattop. 

Furthermore, the beam would stop at the end of 

the flattop, just when the RF drive stops. The 

first electron bunch will draw energy from the 

RF field inside the cavity. This will lead to a 

drop of the cavity voltage. The second bunch will 

do the same, resulting in a further drop of the 

cavity voltage, and so on. One would see an 

effect, which looks similar like a decay after the 

flattop. This is called beam loading. In order to 

compensate for this, one can increase the RF 

drive power during the beam transient time, 

which is in our case the whole flattop. If the 

compensation is just right, a flat flattop can be 

restored. This is desirable, since only in this 

situation every electron bunch would receive 

the same energy gain. A plot of this is shown in 

Figure 5. 

 

 

Figure 5: Cavity gradient over time for an RF 

pulse with compensated beam loading during 

the flattop [1]. 

 

Let us find out the required filling and flattop 

powers for this case. 

In order to consider the beam-loading case, we 

have to extend the simple RCL circuit with an 

additional current source, (see Figure 6). 

 

 

Figure 6: RCL circuit in the case of the beam 

transient time [1]. 

 



We can write the cavity current as the sum of 

currents of all three elements: 

 

𝐼𝑐𝑎𝑣 = 𝐼𝐶 + 𝐼𝑅 + 𝐼𝐿 

 

Simply deriving it for time yields: 

 

𝐼�̇� + 𝐼�̇� + 𝐼�̇� = 𝐼�̇�𝑎𝑣 

 

 

With 𝐼�̇� =
1

𝑅𝐿
�̇�𝑐𝑎𝑣 , 𝐼�̇� = 𝐶�̈�𝑐𝑎𝑣 , and 𝐼�̇� =

1

𝐿
𝑉𝑐𝑎𝑣 

this yields: 

 

𝐶�̈�𝑐𝑎𝑣 +
1

𝑅𝐿
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1

𝐿
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With 
1

𝑅𝐿𝐶
=

𝜔0

𝑄𝐿
 and 

1

𝐿𝐶
= 𝜔0

2  this equation can 

be rewritten as: 

 

�̈�𝑐𝑎𝑣 +
𝜔0

𝑄𝐿
�̇�𝑐𝑎𝑣 + 𝜔0

2𝑉𝑐𝑎𝑣 =
1

𝐶
𝐼𝑐𝑎𝑣 

 

This is a second order differential equation. In 

order to solve it, we need to find a homogeneous 

solution and a particular solution. The 

homogeneous solution reads: 

 

𝑉ℎ𝑜𝑚 = 𝑒
−

𝜔0𝑡
2𝑄𝐿 (𝐶1𝑒𝑖𝛼𝑡 + 𝐶2𝑒−𝑖𝛼𝑡) 

 

with 𝛼 = 𝜔0√1 −
1

4𝑄𝐿
2. 

 

A particular solution is: 

 

𝑉𝑝𝑎𝑟 =
𝑅𝐿𝐼𝑒𝑖(𝜔𝑡+𝛷)

√1 + tan2(𝛷)
 

 

with tan(𝛷) = 𝑅 (
1

𝜔𝐿
− 𝜔𝐶) = 𝑄 (

𝜔

𝜔0
−

𝜔0

𝜔
) . The 

particular solution is also called the stationary 

solution. If the generator frequency  𝜔 is very 

close to the resonance frequency 𝜔0 , the 

following approximation can be done: 

 

�̂�𝑝𝑎𝑟(∆𝜔) ≈
𝑅𝐿𝐼

√1 + (2𝑄𝐿
∆𝜔
𝜔 )

 

 

where ∆𝜔 = 𝜔0 − 𝜔 . With this the general 

solution is: 

 

𝑉𝑐𝑎𝑣 = 𝑉ℎ𝑜𝑚 + 𝑉𝑝𝑎𝑟 

 

𝑉𝑐𝑎𝑣 = 𝑒
−

𝜔0𝑡
2𝑄𝐿(𝐶1𝑒𝑖𝛼𝑡 + 𝐶2𝑒−𝑖𝛼𝑡) +

𝑅𝐿𝐼𝑒𝑖(𝜔𝑡+𝛷)

√1 + tan2(𝛷)
 

 

Since 𝑄𝐿 ≫ 1, we can approximate 𝛼 ≈ 𝜔0. For 

𝐶1 = 𝐶2 = −
𝑅𝐿𝐼

2
 we get: 

 

𝑉𝑓𝑖𝑙𝑙 = 𝑉0 (1 − 𝑒−
𝑡
𝜏) 

 

with 𝑉0 ≈ 2𝑅𝐿𝐼𝑔 =
𝑟

𝑄
𝑄𝐿𝐼𝑔  and 𝜏 =

2𝑄𝐿

𝜔0
. 

Furthermore, for the beam transient time, 

where 𝐼𝑐𝑎𝑣 = 2𝐼𝑔 − 2𝐼𝑏0, we get: 

 

𝑉𝑓𝑙𝑎𝑡 =
𝑟

𝑄
𝑄𝐿 (𝐼𝑔 (1 − 𝑒−

𝑡
𝜏) − 𝐼𝑏0 cos(𝛷𝑏) (1 − 𝑒−

𝑡−𝑇𝑖𝑛𝑗

𝜏 )) 

 

With this we now have two equations, 

describing the fill time and the flattop. Looking 

back at Figure 5, our requirement was to 

maintain a constant cavity voltage over the 

flattop. Thus, the following must hold: 

 
d𝑉𝑓𝑙𝑎𝑡

d𝑡
= 0 

Solving 

 

d

d𝑡

𝑟

𝑄
𝑄𝐿 (𝐼𝑔 (1 − 𝑒−

𝑡
𝜏) − 𝐼𝑏0 cos(𝛷𝑏) (1 − 𝑒−

𝑡−𝑇𝑖𝑛𝑗

𝜏 )) = 0 

 

yields: 

 

𝐼𝑔 = 𝐼𝑏0𝑒
𝑇𝑖𝑛𝑗

𝜏  

 

And finally: 

 

𝑉𝑓𝑙𝑎𝑡 =
𝑟

𝑄
𝑄𝐿𝐼𝑏0 (𝑒

−
𝑇𝑖𝑛𝑗𝜔0

2𝑄𝐿 − 1) 



By inserting parameters similar to the ILC TDR 

(a fill time of 923 µs, a beam current of 5.8 mA, 

and a loaded quality factor of 5.44E6), we can 

produce the plot as shown in Figure 7, which is 

consistent with our expectations. 

 

 

Figure 7: Cavity voltage during fill time and 

flattop with beam loading for parameters 

similar to the ILC TDR [2]. 

In order to compute the required power during 

the filling and the flattop, we can use 𝑃 =
1

4

𝑟

𝑄
𝑄𝐿𝐼𝑔

2, which yields: 

 

𝑃𝑓𝑖𝑙𝑙 =
𝑉𝑐𝑎𝑣

2

4
𝑟
𝑄 𝑄𝐿 (1 − 𝑒

−
𝑇𝑖𝑛𝑗𝜔0

2𝑄𝐿 )

 

 

𝑃𝑓𝑙𝑎𝑡 =
𝑉𝑐𝑎𝑣

2

4
𝑟
𝑄 𝑄𝐿

(1 +

𝑟
𝑄 𝑄𝐿𝐼𝑏0

𝑉𝑐𝑎𝑣
)

2

 

 

By inserting the following values 𝑉𝑐𝑎𝑣 =

31.5 MV m⁄ ∙ 1.038𝑚 = 32.7 MV , 𝑄𝐿 = 5.44 ∙ 106 , 

𝑇𝑖𝑛𝑗 = 923 μs, 𝐼𝑏0 = 5.8 mA, and 𝛷𝑏 = 180° the 

powers read: 

 

𝑃𝑓𝑖𝑙𝑙 = 190 kW 

 

𝑃𝑓𝑙𝑎𝑡 = 190 kW 

 

Of course, it was intentional that the filling and 

flattop powers are the same. The reason is that 

for the ILC it is planned to use klystrons as 

high-power amplifiers, driving multiple cavities 

at once. These amplifiers show a non-linear 

saturation behavior in terms of output power 

versus input power. Thus, when staying at the 

same operation point over the entire RF pulse, 

the LLRF system does not have to cope with any 

non-linearities. 

With the knowledge gained so far, it is possible 

to find a set of equations for optimal 

parameters: 

The optimal coupling reads: 

 

𝛽𝑜𝑝𝑡 = 1 +

𝑟
𝑄

𝑄𝐿𝐼𝑏0

𝑉𝑐𝑎𝑣
cos(𝛷𝑏) 

 

The minimum power for maintaining the cavity 

voltage reads: 

 

𝑃𝑚𝑖𝑛 = 𝛽𝑜𝑝𝑡

𝑉𝑐𝑎𝑣
2

𝑟
𝑄 𝑄0

 

 

The optimum tuning angle reads: 

 

tan(𝛷𝑜𝑝𝑡) = −

𝑟
𝑄 𝑄𝐿,𝑜𝑝𝑡𝐼𝑏0

𝑉𝑐𝑎𝑣
sin(𝛷𝑏) 

 

 

In case of SRF cavities we can simplify to: 

 

𝑄𝐿,𝑜𝑝𝑡 =
𝑉𝑐𝑎𝑣

𝑟
𝑄 𝐼𝑏0 cos(𝛷𝑏)

 

 

𝛷𝑜𝑝𝑡 = −𝛷𝑏 

 

𝑃𝑓𝑙𝑎𝑡,𝑚𝑖𝑛 =
𝑉𝑐𝑎𝑣

2

4
𝑟
𝑄 𝑄𝐿,𝑜𝑝𝑡

= 𝑉𝑐𝑎𝑣𝐼𝑏0 cos(𝛷𝑏) 

 

In reality the cavities are detuned by the tuning 

angle 𝛷 . One source for this is Lorentz force 

detuning. This is an effect which is caused by 

strong electro-magnetic fields within the cavity, 

causing the cavity walls to deform slightly. 



Another source of detuning is microphonics. 

These are mechanicals vibrations caused by e.g. 

pumps, road traffic, etc., which are causing 

constantly changing deformations of the cavity.  

In Figure 8 the vector diagram of generator and 

beam-induced voltages in such a detuned cavity 

are depicted. 

 

 

Figure 8: Vector diagram of generator and 

beam-induced voltages in a detuned cavity [1]. 

From this diagram we can see that 𝑉𝑐𝑎𝑣 = 𝑉𝑔 +

𝑉𝑏 , which we already have covered. But more 

importantly one can also see that: 

 

𝑉𝑐𝑎𝑣 = 𝑉𝑓𝑜𝑟 + 𝑉𝑟𝑒𝑓 

 

This equation, as simple as it is, is very 

powerful. It is true for all times. Typically, at 

pulsed machines, it is convenient to plot the 

cavity, forward and reflected signals. It makes 

it very easy to spot, if something is wrong, e.g. 

with the calibration of a certain channel. 

 

For the following let us consider one more time 

the differential equation for a driven LCR 

circuit and let us write is as follows: 

 

�̈�(𝑡) +
𝜔0

𝑄𝐿
𝑉(𝑡)̇ + 𝜔0

2𝑉(𝑡) =
𝜔0𝑅𝐿

𝑄𝐿
𝐼(̇𝑡) 

 

The driving current 𝐼𝑔 and Fourier component 

𝐼𝑏 of a pulsed beam are harmonic with the time 

dependence 𝑒𝑖𝜔𝑡 . Therefore, we separate the 

fast RF oscillation from the real and imaginary 

parts of the field vector (also see Figure 9): 

 

𝑉(𝑡) = (𝑉𝑟(𝑡) + 𝑖𝑉𝑖(𝑡)) ∙ 𝑒𝑖𝜔𝑡 

 

𝐼(𝑡) = (𝐼𝑟(𝑡) + 𝑖𝐼𝑖(𝑡)) ∙ 𝑒𝑖𝜔𝑡 

 

 

Figure 9: RF signal (red) and its envelope (blue) 

[3]. 

If we now insert this into the equation above 

and omit the second-order time derivatives 

�̈�(𝑡), we get the first-order differential equation 

for the envelope: 

 

�̇�𝑟 + 𝜔1 2⁄ 𝑉𝑟 + ∆𝜔𝑉𝑖 = 𝑅𝐿𝜔1 2⁄ 𝐼𝑟 

 

�̇�𝑖 + 𝜔1 2⁄ 𝑉𝑖 + ∆𝜔𝑉𝑟 = 𝑅𝐿𝜔1 2⁄ 𝐼𝑖 

 

with the cavity bandwidth 𝜔1 2⁄ =
𝜔0

2𝑄𝐿
 and the 

cavity detuning ∆𝜔 = 𝜔0 − 𝜔 . We can rewrite 

these two equations in state space formalism as: 

 
d

d𝑡
(

𝑉𝑟

𝑉𝑖
) = (

−𝜔1 2⁄ −∆𝜔

∆𝜔 𝜔1 2⁄
) ∙ (

𝑉𝑟

𝑉𝑖
) + (

𝑅𝐿𝜔1 2⁄ 0

0 𝑅𝐿𝜔1 2⁄
) ∙ (

𝐼𝑟

𝐼𝑖
) 

 

This is called the cavity differential equation. 

With 𝐴 = (
−𝜔1 2⁄ −∆𝜔

∆𝜔 𝜔1 2⁄
) , 𝐵 = (

𝑅𝐿𝜔1 2⁄ 0

0 𝑅𝐿𝜔1 2⁄
) , 

𝑥 = (
𝑉𝑟

𝑉𝑖
) , and 𝑢 = (

𝐼𝑟

𝐼𝑖
) , we can write this 

equations in short as: 

 

�̇�(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡) 

 

Until now we have considered the cavity 

differential equation continuous in time, which 

is true for reality. For simulations with e.g. a 

computer, the cavity differential equation 

discreate in time is more useful. It reads: 

 



[
𝑉𝑖,𝑛

𝑉𝑞,𝑛
] = [

1 − 𝑇𝜔1 2⁄ −𝑇∆𝜔

𝑇∆𝜔 1 − 𝑇𝜔1 2⁄
] [

𝑉𝑖,𝑛−1

𝑉𝑞,𝑛−1
] + 𝑇𝜔1 2⁄ 𝑅𝐿 [

𝐼𝑖,𝑛−1

𝐼𝑞,𝑛−1
] 

 

This differential equation was used to program 

a single cavity simulator, which is presented in 

the lecture to demonstrate pulsed operation 

with ILC TDR-like parameters. Furthermore, 

the use cases for a low and a high 𝑄𝐿  are 

discussed. Figure 10 shows the GUI of the 

simulator. 

 

 

Figure 10: GUI of single cell cavity simulator. 

4. LLRF Systems 

LLRF systems can be separated into two 

categories: analog LLRF systems and digital 

LLRF systems. 

In the case of the analog LLRF systems, the 

signal detection, signal processing, feedback 

control, and drive signal generation are all 

realized using analog components. These 

systems are typically designed, optimized, and 

built for a specific purpose. When requirements 

change, they are hard to modify. Furthermore, 

one needs additional hardware for data 

monitoring and recording. 

In the case of digital LLRF systems, signals are 

converted from analog to digital using analog to 

digital converters (ADCs). The signal 

processing, including the feedback controller as 

well as the drive signal generation is realized in 

a digital way. The digital drive signal is then 

converted to an analog signal, using digital to 

analog converters (DACs). The advantage of 

digital LLRF systems is that these are very 

flexible. If a requirement changes, the digital 

algorithm can be reprogrammed. There are also 

some modern algorithms, which would be very 

difficult and costly to implement in an analog 

way. Since the signals are already processed 

digitally, it is easy to make them available for 

monitoring and recoding. Furthermore, digital 

systems can be maintained remotely to a great 

extent. 

Generally, digital LLRF systems can be 

subdivided into three different flavors: 1. 19-

inch module-based systems, 2. Crate-based 

system, and 3. Mixed system. 

An example for a 19-inch module-based system 

is the LCLS-II LLRF system. Its prototype 

version is shown in Figure 11. 

 

 

Figure 11: LCLS-II prototype LLRF system at 

FNAL CMTS [4]. 

On the right side of the picture, on can see the 

inside of a 19-inch module. This hardware was 

developed and built specifically for its purpose 

and is very well optimized. 

An example for a crate-based system, is the 

MicroTCA.4-based LLRF system at the 

European XFEL at DESY. Figure 12 shows on 

the left side a system inside the tunnel 

underneath a cryomodule and on the right side 

the crate and four cards as an example. The  



 

Figure 12: MicroTCA.4-based LLRF system at 

the European XFEL at DESY [5]. 

crate offers slots at the front and at the back. In 

the back cards with analog hardware are 

inserted. In the front, cards with digital 

hardware are inserted. The cards are 

interconnected via a connector. This way e.g. the 

down converter card is combined with a 

digitizer card and the LLRF controller card is 

combined, with the vector modulator card. The 

modular nature of such systems allows an easy 

replacement of a broken card. Furthermore, all 

cards are of-the-shelf components. A wide range 

of cards optimized for different purposes are 

commercially available. Another advantage of 

such kind of system is, that it is very compact. 

 

An example for a mixed system is the 

MicroTCA.0-based LLRF system at the cERL at 

KEK. Figure 13 shows on the left side the racks 

of several system within the temperature-

controlled hut and on the right side the 

components of one LLRF system. In this case 

the down conversion is done with a 19-inch 

module, whereas the controller is realized on a 

card within a MicroTCA.0 crate. Such kind of 

system allows the combination of the best of 

both other system flavors. 

 

 

Figure 13: MicroTCA.0-based LLRF system at 

cERL at KEK [6]. 

Figure 14 shows an example system 

architecture of a digital LLRF system. As 

described above, the analog input signals are 

digitized using ADCs. The digital signals are 

processed by e.g. filters and a feedback 

controller on a Field Programmable Gate Array 

(FPGA). It is possible to implement also further 

algorithms and calculations in order to allow 

special functionalities. The generated drive 

signal is converted to analog using a DAC. The 

FPGA is typically interconnected with a local 

CPU. This is basically a small computer, 

connected to the control system of the facility. It 

allows data communication with remotely 

connected computers, which are used either for 

monitoring and operation or for data 

acquisition. 

 

Figure 14: Example system architecture of a 

digital LLRF system. 

 



5. Signal Sampling 

Converting analog signals into digital ones is 

crucial for realizing digital LLRF systems. As 

mentioned in the previous sections, ADCs are 

used to this end. As shown in Figure 15, the 

ADC measures the amplitude of an analog 

signal at a certain point in time and outputs the 

according number. This is called a sample point. 

The time between two consecutive sample 

points is the sample period Ts. ADC typically 

have a clock input, which allows to trigger the 

sampling. 

 

 

Figure 15: General idea of digitally sampling an 

analog signal [7]. 

As prerequisite for the following, we need to 

define the coordinates we will be using. When 

dealing with sinusoidal signals, amplitude and 

phase are naturally the quantities used for 

description. It turns out that these are not 

optimal for performing computations on an 

FPGA. For this purpose, the best choice is the 

representation in In-phase (or real part) I and 

Quadrature (or imaginary part) Q. Figure 16 

shows the representation of a coordinate in 

terms of amplitude and phase as well as I and 

Q. The relations are: 

 

 𝐼 = 𝐴 cos(𝛷) 

 

 𝑄 = 𝐴 sin(𝛷) 

 

 A= √𝐼2 + 𝑄2 

 

 𝛷 = atan(
𝑄

𝐼
) 

 

 

 

Figure 16: Relation between amplitude and 

phase and in-phase and quadrature 

representations [1]. 

Furthermore, we have to consider the frequency 

of the RF signal 𝑓𝑅𝐹  and the sampling 

frequency 𝑓𝑠. If the frequency of the RF signal 

is too high, it cannot be reconstructed (aliasing). 

We have to obey the Nyquist-Shannon theorem. 

It states that, if 

 

𝑓𝑠 > 2𝑓𝑅𝐹 

 

a perfect reconstruction of 𝑓𝑅𝐹 is quarantined. 

In the case of ILC, the 𝑓𝑅𝐹 is 1.3 GHz. Typically, 

ADCs can sample with tenths to a few hundreds 

of MHz. In order to overcome this issue, the RF 

signal can be down converted in frequency. In 

general, the RF signal can be described as: 

 

𝑆𝑅𝐹(𝑡) = 𝐴𝑅𝐹 ∙ sin(2𝜋 ∙ 𝑓𝑅𝐹 ∙ 𝑡 + 𝛷𝑅𝐹) 

 

For the following let us assume 𝛷𝑅𝐹 = 0 . 

Furthermore, let us assume we create a second 

signal with a local oscillator with a slightly 

higher frequency (e.g. 𝑓𝐿𝑂  = 1.31 GHz). This 

can described as: 

 

𝑆𝐿𝑂(𝑡) = 𝐴𝐿𝑂 ∙ sin(2𝜋 ∙ 𝑓𝐿𝑂 ∙ 𝑡 + 𝛷𝐿𝑂) 



In order to keep it simple, let us assume 𝐴𝐿𝑂 =

1  and 𝛷𝐿𝑂 = 0 . Now we mix both signals, 

yielding: 

 

𝑆𝐿𝑂∙𝑅𝐹(𝑡) = sin(2𝜋 ∙ 𝑓𝑅𝐹 ∙ 𝑡) ∙ sin(2𝜋 ∙ 𝑓𝑅𝐹 ∙ 𝑡) 

 

This we can rewrite as: 

 

𝑆𝐿𝑂∙𝑅𝐹(𝑡) =
1

2
(cos(2𝜋 ∙ (𝑓𝐿𝑂 − 𝑓𝑅𝐹) ∙ 𝑡) − cos(2𝜋 ∙ (𝑓𝐿𝑂 + 𝑓𝑅𝐹) ∙ 𝑡)) 

 

At this point let us assume we apply a low-pass 

filter, which cuts off the frequency component 

𝑓𝐿𝑂 + 𝑓𝑅𝐹. The resulting signal is: 

 

𝑆𝐼𝐹(𝑡) =
1

2
(cos(2𝜋 ∙ (𝑓𝐼𝐹) ∙ 𝑡)) 

 

where 𝑓𝐼𝐹 = 𝑓𝐿𝑂 − 𝑓𝑅𝐹 . IF stands for 

intermediate frequency. In our example 𝑓𝐼𝐹  = 

10 MHz. This frequency can easily be sampled 

using an ADC. It is very important to note is 

that this method preserves the original 

amplitude and phase information. Figure 17 

shows a schematic of the down conversion steps. 

 

 

Figure 17: Diagram of the down conversion 

process. 

There are different sample methods. In the 

following we will discuss IQ sampling as well as 

under sampling and over sampling. 

IQ sampling is the most straight forward. In 

this case 𝑓𝑠 > 4 ∙ 𝑓𝐼𝐹. This means in terms of I 

and Q: 

 

𝑓𝐼𝐹(0) = 𝑄 

 

𝑓𝐼𝐹 (
𝜋

2
) = 𝐼 

 

𝑓𝐼𝐹(𝜋) = −𝑄 

 

𝑓𝐼𝐹 (
3𝜋

2
) = −𝐼 

 

We can also identify: 

 

(
𝐼
𝑄

)
𝑛

= (
cos(∆𝛷𝑛) −sin(∆𝛷𝑛)
sin(∆𝛷𝑛) cos(∆𝛷𝑛)

) ∙ (
𝑓𝐼𝐹,𝑛+1

𝑓𝐼𝐹,𝑛
) 

 

This method is also illustrated in Figure 18. 

 

 

Figure 18: IQ sampling in the complex plane 

(top) and in time domain (bottom) [8]. 

Let us write down the general ratio between the 

sampling frequency and the intermediate 

frequency as: 

 
𝑓𝑠

𝑓𝐼𝐹
= 𝑚 

 

with ∆𝛷 =
2𝜋

𝑚
 (see Figure 19). As we have 

discussed above, the case of 𝑚 = 4 is called IQ 

sampling. Furthermore, it is defined that 𝑚 <

2  corresponds to under sampling and 𝑚 > 2 

corresponds to over sampling. Thus, IQ  



 

Figure 19: Example of general IQ sampling, 

here over sampling [8]. 

sampling is a special case of over sampling. In 

general, we can compute I and Q with: 

 

(
𝐼
𝑄

)
𝑛

=
1

sin(∆𝛷 + 𝛷)
(

cos(𝑛∆𝛷 + 𝛷) −cos((𝑛 + 1)∆𝛷 + 𝛷)

− sin(𝑛∆𝛷 + 𝛷) sin((𝑛 + 1)∆𝛷 + 𝛷)
) ∙ (

𝑦𝐼𝐹,𝑛+1

𝑦𝐼𝐹,𝑛
) 

 

I and Q can also be computed via the following 

sums: 

 

𝐼 =
2

𝑚
∑ 𝑦𝑛 cos (

2𝜋𝑛

𝑚
)

𝑚−1

𝑛=0

 

 

𝑄 =
2

𝑚
∑ 𝑦𝑛 sin (

2𝜋𝑛

𝑚
)

𝑚−1

𝑛=0

 

 

The advantage of under sampling are relaxed 

requirements for the ADC due to the lower 

sampling rate. This translates also to relaxed 

requirements for the FPGA due to the lower 

data rate. Both may result in cost reductions. 

Furthermore, in under sampling it is possible to 

detect IF signals with a higher frequency than 

the ADC sampling rate. 

The advantages of over sampling are e.g. to 

have more sampling points per IF period. This 

results in noise reduction due to the averaging 

in the calculation of the I and Q values. Beside 

this, the choice of the IF location in the first 

Nyquist zone is more flexible. 

6. Digital Signal Processing and 

Implementation 

At ILC it is planned to drive the cavities in 

groups of 39 with individual single klystrons. 

One group of cavities with the corresponding 

klystron and LLRF system is called an RF 

station. Since the klystron can receive only one 

input signal, and its output is distributed to the 

multiple cavities, a so-called vector-sum control 

has to implemented within the LLRF system. To 

this end the probe signal of every cavity of the 

RF station is send to the LLRF system and is 

digitized. Then, the I and Q values of the 

individual signals are summed up, resulting in 

the vector sum. Figure 20 shows its 

representation in the complex plane for a case 

of eight cavities. This calculation is realized on 

the FPGA. 

 

 

Figure 20: Representation of the vector sum in 

the complex plane. 

An FPGA is chip, in which arbitrary logic 

circuits can be realized. The major advantage of 

FPGAs is that they can be reprogrammed. 

Modern FPGAs feature in addition processor 

cores, so that demanding computations can be 

performed without occupying resources in 

terms of e.g. logical cells. Since the FPGA acts 

more like an integrated circuit, the time 

required for algorithms or computations is 

defined by its design and is always constant. In 



other words, FPGAs allow actual real-time 

algorithms. (“Real-time” does not mean 

instantaneously. It means the time between the 

input and the output is always the same.) 

Regardless, if working alone or in a team, a 

structured way of work is essential for the 

success of a project. For the implementation of 

the firmware of the FPGA the following 

workflow is recommended. 

First, the requirements of the firmware to be 

implemented have to be defined and 

documented. It is useful to make flow charts of 

algorithms and subcomponents for a better 

understanding and for checking signal widths. 

By this signal overflow can be avoided, which 

otherwise can lead to dangerous situations 

during operation. 

In a next step the code of the firmware is 

created. There are two major possibilities to 

approach this. The first is to write the code (e.g. 

VHDL) by hand. Depending on the project, this 

may take time. But it allows to control and 

optimize every aspect of the algorithm. The 

second way is to use software like e.g. 

MathWorks Simulink. It allows to build 

algorithms via a flow chart. From the flowchart, 

VHDL code is created automatically. This 

makes quick prototyping possible. The 

disadvantage is, that one does not have full 

control over predefined subcomponents. Thus, 

optimization is impossible in some cases. 

Furthermore, the automatically generated 

VHDL code is very hard or sometimes even 

impossible to be understood by humans. Of 

course, it is also possible to combine both 

approaches of code generation. 

After the code was generated, a so-called test 

bench should be programmed. This is additional 

code, which allows to test the VHDL code in a 

simulator. During such a test, all possible 

inputs should be fed to the algorithm and the 

output should be consistent with the 

requirements. This way malfunctions of the 

algorithm in some edge cases can be found and 

fixed. 

After testing within the test bench was 

successful, the code should be tested and 

debugged on the target hardware. Target 

hardware means ideally test hardware, which is 

identical to the production hardware. This step 

is very important, since the simulation is only a 

rough approximation to reality. When the 

testing and debugging on the target hardware 

was successful, the code can be deployed to the 

production hardware. 

If requirements for the firmware have changed, 

the entire implementation and testing workflow 

has to be passed through again. 

7. Controller Theory 

The controller is the essential part of the 

firmware. Its design and setup have a great 

impact on what RF stability can be achieved in 

the end. In order to talk about controller theory, 

we first have to define, what a transfer function 

is. It is the ratio of the Laplace-transforms of the 

output signal 𝑌(𝑠) and the input signal X(𝑠) of 

a linear time-invariant system (see Figure 21). 

It reads: 

 

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
 

 

Figure 21: Definition of the transfer function 

[9]. 

𝐻(𝑠) is a representation of the system, since we 

can compute the output for a given input. 

 

 



The Laplace transform reads: 

 

𝐻(𝑠) = ∫ ℎ(𝑡)𝑒−𝑠𝑡d𝑡
+∞

𝑡=0

 

 

Note that ℎ(𝑡) is in the time domain and 𝐻(𝑠) 

in the complex frequency domain. The inverse 

Laplace transform reads: 

 

𝑓(𝑡) = 𝐿−1{𝐹(𝑠)} =
1

2𝜋𝑗
∫ 𝐹(𝑠) ∙ 𝑒𝑠𝑡d𝑠

𝛼+𝑗𝜔

𝑠=𝑎−𝑗𝜔

 

 

Figure 22 shows the properties of the Laplace 

transform as well as Laplace transform pairs. 

 

 

Figure 22: Properties of Laplace transform and 

Laplace transform pairs [9]. 

 

In order to learn how to obtain a transfer 

function, let us consider an RC circuit as an 

example as shown in Figure 23. 

 

Let us write down the current: 

 

𝐼(𝑡) = 𝐶 ∙
d𝑢𝑐(𝑡)

d𝑡
=

𝑢(𝑡) − 𝑢𝑐(𝑡)

𝑅
 

 

( )u t

R

C
( )Cu t

( )I t

 

Figure 23: RC circuit [9]. 

It can be rearranged to: 

 
d𝑢𝑐(𝑡)

d𝑡
+

𝑢𝑐(𝑡)

𝑅𝐶
=

𝑢(𝑡)

𝑅𝐶
 

 

With the Laplace transform 𝑓′(𝑡) ↔ 𝑠𝐹(𝑠)  we 

get: 

 

𝑠𝑈𝑐(𝑠) +
𝑈𝑐(𝑠)

RC
=

𝑈(𝑠)

𝑅𝐶
 

 

And with this: 

 

𝑈𝑐(𝑠)

𝑈(𝑠)
=

1
𝑅𝐶

𝑠 +
1

𝑅𝐶

= 𝐻(𝑠) 

 

which is the transfer function of the RC circuit. 

From this we can deduct the system output from 

a given input. Let us assume a unit step  

𝑈(𝑠) =
1

𝑠
: 

 

𝑈𝑐(𝑠) =

1
𝑅𝐶

𝑠 +
1

𝑅𝐶

1

𝑠
 

 

And from this the system output in time 

domain, with 𝑅𝐶 = 𝜏 being the time constant: 

 

𝑢𝑐(𝑡) = ∫
1

𝜏
𝑒

−𝑥
𝜏 d𝑥

𝑡

0

= (𝑒
−𝑥
𝜏 )|

𝑥 = 𝑡
𝑥 = 0

= 1 − 𝑒
−𝑡
𝜏  



If we go back to the differential equation 

 
d𝑢𝑐(𝑡)

d𝑡
+

𝑢𝑐(𝑡)

𝑅𝐶
=

𝑢(𝑡)

𝑅𝐶
 

 

and solve it, we will find that 𝑢𝑐(𝑡) = 1 − 𝑒
−𝑡

𝜏 . 

 

In the next step we want to transform the 

transfer function 𝐻(𝑠)  from the complex 

frequency domain to the transfer function in 

frequency domain 𝐻(𝑗𝜔). 

 

𝐻(𝑠)|𝑠=𝑗𝜔 = 𝐻(𝑗𝜔) = |𝐻(𝑗𝜔)|𝑒𝑗 𝐻(𝑗𝜔) = |𝐻(𝑗2𝜋𝑓)|𝑒𝑗 𝐻(𝑗2𝜋𝑓) 

 

In this equation we can nicely see the 

separation of the amplitude in dependence of 

the frequency |𝐻(𝑗2𝜋𝑓)| and the phase in 

dependence of the frequency 𝑒𝑗 𝐻(𝑗2𝜋𝑓) . When 

plotting these two functions, we get something 

like what is shown in Figure 24. These plots are 

called Bode plots. 

 

 

Figure 24: Example of Bode plots [9]. 

If we come back to the RC example and assume 

a time constant of 1 ms, we get Bode plots as 

shown in Figure 25. 

 

 

Figure 25: Actual Bode plots for the RC example 

with a time constant of 1 ms [9]. 

Let us consider the case of a sinusoidal signal as 

an input signal. We will find, that e.g. for an 

input of cos(2𝜋 ∙ 50𝑡), we will get an output of 

|𝐻(𝑗𝜔)|cos(2𝜋 ∙ 50𝑡 + 𝐻(𝑗𝜔)) , where |𝐻(𝑗𝜔)|  is 

the amplitude of the output signal and 𝐻(𝑗𝜔) 

its phase shift. Software like MathWorks 

Simulink allows us to simulate such a system. 

In the case shown in Error! Reference source not 

found., the input signal has a frequency of 160 

Hz. 

 



 

Figure 26: Signal simulation of a 160 Hz sine 

wave through a RC circuit with a time constant 

of 1000 ms [9]. 

 

From the figure we can clearly see the phase 

shift, but we can also recognize a change in 

amplitude. When calculating the output signal, 

we find that it reads: 

 

𝑢𝑐(𝑡)𝑓=160 Hz =
1

√2
cos (2𝜋 ∙ 160𝑡 −

𝜋

4
) 

 

If we increase the frequency of the input signal 

to 600 Hz, we will find that: 

 

𝑢𝑐(𝑡)𝑓=600 Hz =
1

4
cos (2𝜋 ∙ 600𝑡 −

5𝜋

12
) 

 

with the corresponding simulation shown in 

Figure 27. 

 

 

Figure 27: Signal simulation of a 600 Hz sine 

wave through a RC circuit with a time constant 

of 1000 ms [9]. 

This means that the amplitude and the phase 

shift of the output signal depends on the 

frequency of the input signal. 

We can model a cavity using a RCL circuit, as 

already seen above. It its case we can write: 

 

𝑍(𝑠) =

𝑠
𝐶

𝑠2 +
1

𝑅𝐶 𝑠 + 𝜔0
2

=

𝑅𝜔0
𝑄 𝑠

𝑠2 +
1
𝑄 𝑠 + 𝜔0

2
 

 

If we assume a resonance frequency of 1.3 GHz 

and a quality factor of 𝑄 = 1.3 ∙ 106, we get the 

Bode plots as shown in Figure 28. This case 

corresponds to a SRF cavity. 

 



 

Figure 28: Bode plot for a 1.3 GHz cavity with 

Q=1.3E6 [9]. 

In case of a normal conducting cavity, the 

quality factor is much lower. Let us assume  𝑄 =

7000 and compare both Bode plots in Figure 29. 

We can clearly see that the bandwidth of the 

cavity is related with the quality factor. 

 

 

 

Figure 29: Bode plot for a 1.3 GHz cavity with 

Q1=1.3E6 and Q2=7E3 [9]. 

Until now we have considered the transfer 

function for a single element or device. In the 

following we want to describe a basic control 

system in a transfer function representation, as 

shown in Figure 30. There 𝐾(𝑠) represents the 

controller, P(𝑠) the plant one wants to control, 

and F(𝑠) the detector or sensor, which is used 

to measure the response of the plant. 

 

 

Figure 30: Schematic of a simple control system 

in a transfer function representation [9]. 

In order to be able to calculate the transfer 

function of a whole system, we need to know 

how to combine the transfer functions of single 

elements. Figure 31 shows an overview of the 

rules for the serial, the parallel and the 

feedback case. 

 

 

Figure 31: Rules on how to combine single 

transfer functions [9]. 

Following these rules, let us calculate the 

transfer function of the feedback loop shown in 

Figure 30. To this end, we first combine 𝐾(𝑠) 

and 𝑃(𝑠) . Then we apply the rule for the 

feedback system. Figure 32 shows the process 

step by step. 

 



 

Figure 32: Calculating the transfer function of a 

simple feedback system [9]. 

In the real world, feedback systems are much 

more complicated. It is not uncommon to have 

systems with several loops as shown in Figure 

33. 

 

 

Figure 33: Example of a more complicated 

feedback system with multiple loops [9]. 

The transfer function of such a system can be 

computed by using the Mason’s Gain Rule. In it 

𝑀 is the transfer function of the system. 𝑀𝑗 is 

the gain of one forward path. 𝑗 is an integer 

representing the forward paths in the system. 

∆𝑗=1− the loops remaining after removing path 

𝑗 . If none remain, then ∆𝑗= 1. ∆= 1 + 𝛴  non-

touching loop gains taken two at a time −𝛴 

non-touching loop gains taken three at a time 

+𝛴 non-touching loop gains taken four at a time 

− etc. The resulting rule reads: 

 

𝑀 =
∑ 𝑀𝑗∆𝑗𝑗

∆
 

In the following let us evaluate the impact of a 

feedback loop in comparison to the open loop 

case. To this end we will compare the transfer 

functions. Until now we have considered ideal 

systems. In the real world, we have to deal with 

disturbances. Thus, let us add a disturbance to 

the simple feedback system and write down the 

transfer function. Figure 34 shows this for the 

closed loop case on the left and the open loop 

case on the right. 

 

 

Figure 34: Closed and open loop systems with 

disturbances [9]. 

Let us give the plant in both cases some 

meaning and write down the transfer functions 

in the complex frequency domain as well as in 

the frequency domain (see Figure 35). 

 

 

Figure 35: Transfer functions of closed and open 

loop systems with disturbances [9]. 

A good way of comparing these results is to look 

at the Bode plots. Figure 36 shows the closed 

and open loop cases combined. In the closed loop  



 

Figure 36: Combined Bode plots of the closed 

and open loop cases [9]. 

case, the proportional gain KP is varied. We can 

clearly recognize an offset of the graphs for 𝑓 →

0 Hz. In case of the open loop, there is no 

disturbance rejection for low frequencies. For 

higher frequencies we do see a rejection, but 

this is only due to the chosen low-pass behavior 

of the plant. In the feedback case, the higher the 

gain is chosen, the more disturbances are 

rejected, which holds for lower and also higher 

frequencies. 

Beside the ability to suppress disturbances, a 

feedback loop has to be stable. There are several 

stability criteria: e.g. root locus, solving the 

characteristic equation, the Routh-Hurwitz 

stability criterion, etc. The most simple and 

intuitive definition of stability is: A stable 

system is a dynamic system with a bounded 

response to a bounded input (see Figure 37). 

 

 

Figure 37: Schematic of a stable and a unstable 

dynamic system [9]. 

Since we cannot try all bounded input signals 

on our system, let us take a look at the 

characteristic equation. It is the denominator of 

the transfer function. 

 

𝐻(𝑠) =
𝐾(𝑠 − 𝑧1)(𝑠 − 𝑧2) … (𝑠 − 𝑧𝑛−1)(𝑠 − 𝑧𝑛)

(𝑠 − 𝑝1)(𝑠 − 𝑝2) … (𝑠 − 𝑝𝑛−1)(𝑠 − 𝑝𝑛)
 

A necessary and sufficient condition for a 

feedback system to be stable is that all the poles 

(𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛) of the system transfer function 

have negative real parts. ( 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑛 ) are 

called the zeros of the transfer function. Thus, 

the following system would be stable: 

 

𝐻(𝑠) =
𝑠 + 1.5

𝑠3 + 4𝑠2 + 6𝑠 + 4

=
𝑠 − (−1.5)

[𝑠 − (−1 + 𝑖)][𝑠 − (−1 − 𝑖)][𝑠 − (−2)]
 

 

Three poles: −1 ± 𝑖 and -2. 

And the following system would be unstable: 

 

𝐻(𝑠) =
𝑠 + 1.5

𝑠3 − 2𝑠2 + 4

=
𝑠 − (−1.5)

[𝑠 − (1 + 𝑖)][𝑠 − (1 − 𝑖)][𝑠 − (−2)]
 

 

Three poles: 1 ± 𝑖 and -2. 

Figure 38 shows the poles and zeros in the pole-

zero map. The right half plane poles are 

unstable. 

 

 

Figure 38: Example of a pole-zero map [9]. 

In some cases, the characteristic equation can 

be very complicated and it is not easy to 

evaluate the poles. In addition, one also wants 

to know, if a given feedback system is stable at 

a certain feedback gain. To answer this 

question, it is popular to evaluate the Bode plot. 



The closed loop is stable, if the open loop gain at 

-180 degree (or -540 degree, etc.) is less than 1 

or 0 dB (see Figure 39). Furthermore, by this 

method it is also possible to evaluate the gain 

margin, since a larger margin means a better 

robustness. 

 

 

Figure 39: Example bode plot for a stable and 

unstable system [9]. 

Another way to evaluate the stability is to plot 

the Nynquist diagram. It is the plot of the 

imaginary part versus the real part of the 

transfer function in the frequency domain. An 

example is shown in Figure 40. 

 

 

Figure 40: Example of a Nyquist diagram [9]. 

 

 

 

 

In real-world systems the proportional and 

integral (PI) controller is very popular. It can be 

modeled as shown Figure 41. In some cases, a 

differential part is added, extending it to a PID 

controller. 

 

 

Figure 41: Modelling of the PI controller [9]. 

A more modern and very useful type of 

controller is the multiple input multiple output 

(MIMO) controller (see Figure 42). Beside the 

PID controller functionality, it can also be used 

e.g. for the cancellation of cross coupling 

between inputs as well as for the cancellation of 

a passband mode. 

 

 

Figure 42: Feedback loop with MIMO controller 

[9]. 

8. Example Features of an LLRF System 

Typically, an LLRF system is a subsystem of a 

facility as e.g. a test stand or a large scale 



particle accelerator. At such facilities a personal 

protection system (PPS) is required. The goal is 

to prevent any harm, injury to or death of 

humans working at the facility of being around 

it. E.g., if a particle accelerator is being 

operated, it is forbidden to enter the accelerator 

tunnel. If someone opens a door to the tunnel 

during operation, the operation is stopped 

automatically. In addition to a PPS, especially 

in larger scale facilities, a machine protection 

system (MPS) is implemented. Its goal is to 

prevent the accelerator or in most cases 

subcomponents from damaging or destroying 

itself. If e.g. arcing in a klystron is detected, the 

LLRF system receives a signal to stop the 

generation of the drive signal. Since in such a 

case no accelerating field can be generated 

anymore in the cavities, the energy of 

transmitted beam would be wrong, resulting in 

downstream beam loss. In order to prevent this, 

the beam is also turned off automatically in 

such a case. The signal triggering the stop of 

operation of subsystems is called an interlock 

signal. All LLRF systems must have interlock 

capability. Since it is imperative to work 

reliably, such interlock functionality should be 

hardwired in hardware or firmware. Figure 43 

shows a possible solution. Note, that an 

implementation in software is not reliably 

enough. 

 

 

Figure 43: Possible implementation of interlock 

functionality in firmware. 

Beside this, the LLRF system should have a 

certain degree of exception prevention and 

handling. A simple example is to implement a 

limiter on the drive signal. This way e.g.  

overdriving the high-power amplifier or 

quenching a cavity can be prevented. In 

addition, it is advisable to implement a limiter 

on the set point amplitude. This way an 

unexperienced operator of the LLRF system 

cannot enter values, which could be potentially 

dangerous. An example for active exception 

handling would be quench detection. The loaded 

quality factor 𝑄𝐿 of a cavity can be calculated 

from the pickup signal during the decay time. In 

case of a quench, the 𝑄𝐿  value drops 

significantly. The LLRF system can compute the 

𝑄𝐿 value for every RF pulse and when it falls 

below a predefined threshold, the drive signal is 

cut, and an interlock signal is generated. 

At ILC it is planned to utilize 9-cell SRF cavities 

for beam acceleration. Since these cavities have 

nine cells, they have nine different eigenmodes. 

For beam acceleration only the so-call 𝜋-mode 

is suitable. Thus, the goal is to feed all power 

only to this mode. All other modes should be 

suppressed. This can be achieved by e.g. Notch 

filters at the ADCs for the 
8𝜋

9
-mode. It is also 

possible to add an additional filter for the 
7𝜋

9
-

mode in a MIMO controller, as mentioned 

above. 

Another feature typically implemented within 

the LLRF system is the fast cavity tuning. SRF 

cavities are built and assembled at room 

temperature, but operated at 2 K. During the 

cooldown the cavity is typically relaxed in order 

to prevent any possibilities of unwanted 

deformations. The cavity was pre-tuned at room 

temperature to roughly reach the design 

frequency at 2 K. In order to actually reach the 

design frequency, the cavity can be elastically 

deformed in a controlled manner, using motor 

tuners. These motors are slow stepper motors 

and are left in position once the cavity has been 

tuned. Beside the motor tuners, the cavity is 

also equipped with a piezo tuner. This is used 

for the compensation of fast frequency changes, 

induced by e.g. Lorentz force detuning or 



microphonics. Figure 44 shows pictures of three 

different piezo configurations. 

 

 

Figure 44: Three different of piezo 

configurations on cavities during the S1-global 

project [10]. 

As stated at the beginning, the goal of the LLRF 

system is to control the amplitude and phase 

within cavities to be better than the required 

stability. Thus, a LLRF system should have the 

feature of computing the RF stability. 

Depending on the facility, different kinds of 

stability have to be computed. In a single cavity 

control scheme, of course the stability of the 

single cavity is important. For the amplitude 

the stability is typically defined as ∆𝐴/𝐴, where 

∆𝐴 is the standard deviation of the amplitude 

and 𝐴 the average of the amplitude. For the 

phase ∆𝛷 is used. These values are computed 

only for a certain time period, as e.g. for the 

flattop region or the beam transient time. In 

this case the stability is called intra train 

stability. In case of vector sum control, the 

stability of the vector sum amplitude and phase 

is computed in the same way. It is also possible 

to define a measure for the stability from pulse 

to pulse. This is called the inter train stability.  

9. Summary 

Due to the limited length of this lecture, it is 

impossible to show and explain all important 

aspects of LLRF in detail. It is a subject one has 

to study for an extended time. Nevertheless, 

with the overview given, everyone who is 

planning to get involved with LLRF should now 

understand what he or she should learn. First, 

learn about the target facility. What are the 

requirements for e.g., stability, etc.? Plan 

carefully, how the LLRF system can be 

integrated. Second, learn the required 

theoretical background as e.g. cavity theory, RF 

theory, signal processing theory, controller 

theory, etc. Third, learn about analog hardware. 

Fourth, learn about digital hardware. Fifth, 

learn about firmware. Sixth, learn about 

software. 

Every of these topics is an individual field of 

expertise. But as an LLRF expert, one has to 

know the most important aspects of every topic 

in order to design, implement, commission, and 

operate an LLRF system. 
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