超伝導技術が切り拓く 粒子加速器・物理実験のフロンティア

山本明(KEK/CERN)

OHO-22,「夜話」 2022-9-7

1

・はじめに

- 加速器における応用
 - 超伝導(電)磁石
 - 超伝導高周波加速空洞
- ・**粒子検出器**における応用
 - 透明な磁石、応用の広がり
 - ・ 夜話トピックス―宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」

OHO'22 における講義

・はじめに

- 加速器における応用
 - 超伝導(電)磁石
 - 高周波加速空洞
- ・**粒子検出器**における応用
 - <u>透明な磁石</u>、応用の広がり

超伝導電磁石加速器応用全般	津		透	
超伝導の基礎・・・・・・有	本		靖	
超伝導電磁石の基礎。鈴	木	研	人	
超伝導線材の研究開発	池	章	弘	
SuperKEKB 超伝導電磁石システム大	内	徳	人	
HL-LHC 計画と KEK における超伝導磁石開発中	本	建	志	
夜話:超伝導技術が切り拓く粒子加速器・物理実験のフロンティア山	本		明	
検出器用マグネット槙	田	康	博	
ヘリウム冷凍システム中	西	功	太	
g-2/EDM 超伝導電磁石開発と MRI への精密磁場技術阿	部	充	志	
KAGRA の低温技術 ······木	村	誠	宏	
COMET と耐放射線超伝導磁石開発 吉 田 誠・飯	尾	雅	実	
サイクロトロンの超伝導化奥	野	広	樹	
QST 重粒子線治療用加速器の超伝導化水	島	康	太	

- ・ 夜話トピックス―宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」
- ・未来への夢

OHO'22 における講義

・はじめに

- ・加速器における応用
 - 超伝導(電)磁石
 - 高周波加速空洞
- ・**粒子検出器**における応用
 - 透明な磁石、応用の広がり

超伝導電磁石加速器応用全般	津		透
超伝導の基礎・・・・・・有	本		靖
超伝導電磁石の基礎鈴	木	研	人
超伝導線材の研究開発	池	章	弘
SuperKEKB 超伝導電磁石システム大	内	徳	人
HL-LHC 計画と KEK における超伝導磁石開発中	本	建	志
夜話:超伝導技術が切り拓く粒子加速器・物理実験のフロンティア山	本		明
検出器用マグネット	田	康	博
ヘリウム冷凍システム中	西	功	太
g-2/EDM 超伝導電磁石開発と MRI への精密磁場技術	部	充	志
KAGRA の低温技術木	村	誠	宏
COMETと耐放射線超伝導磁石開発 吉 田 誠・飯	尾	雅	実
サイクロトロンの超伝導化奥	野	広	樹
QST 重粒子線治療用加速器の超伝導化水	島	康	太

・ 夜話トピックス―宇宙観測への超伝導技術応用:

・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」

OHO'22 における講義

・はじめに

- ・加速器における応用
 - 超伝導(電)磁石
 - 高周波加速空洞
- ・ 粒子検出器における応用
 - <u>透明な磁石</u>、応用の広がり

超伝導電磁石加速器応用全般	津		透
超伝導の基礎・・・・・・有	本		靖
超伝導電磁石の基礎。鈴	木	研	人
超伝導線材の研究開発	池	章	弘
SuperKEKB 超伝導電磁石システム大	内	徳	人
HL-LHC 計画と KEK における超伝導磁石開発	本	建	志
夜話:超伝導技術が切り拓く粒子加速器・物理実験のフロンティア山	本		明
検出器用マグネット	田	康	博
ヘリウム冷凍システム中	西	功	太
g-2/EDM 超伝導電磁石開発と MRI への精密磁場技術	部	充	志
KAGRA の低温技術木	村	誠	宏
COMET と耐放射線超伝導磁石開発 吉田 誠・飯	尾	雅	実
サイクロトロンの超伝導化奥	野	広	樹
QST 重粒子線治療用加速器の超伝導化水	島	康	太

・ 夜話トピックス―宇宙観測への超伝導技術応用:

・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」

感謝 加速器科学・素粒子実験推進への 超伝導技術開発の先駆者

 平林洋美先生 (~ 2008)

年	KEK:超伝導技術による達成
1983 ~	KEK-PSビームライン(平林) スペクトロメータ磁石
1986 ~	KEK-TRISTAN 加速空洞(小島) ビーム収束磁石、粒子検出器磁石
1999 ~	KEK-B B factory 空洞、磁石
2008 ~	LHCビーム収束磁石、粒子検出器磁石 HL-LHC 偏向磁石
2009 ~	J-PARCビームライン磁石
2010 ~	KEK Compact Energy Recovery Linac STF SC Linac (for preparing ILC)

 小島融三先生 (~2008)

私自身の「加速器・物理実験への超伝導技術応用」の取り組み

Year	Project	Hosted by		C. M.S.
1980s	KEK-PS SC (π 1) beamline TOPAZ solenoid for TRISTAN	KEK KEK		
1990s	BESS solenoid ballooning in Canada Muon g-2 storage ring WASA solenoid Belle detector solenoid (assist) MEG solenoid	NASA/ISAS BNL Uppsala KEK Tokyo/PSI		
2000s	LHC-IRQ, accelerator LHC-ATLAS detector solenoid BESS-Polar balloon in Antarctica SC p-beamline for T2K v-beam (assist)	CERN CERN NASA/ISAS J-PARC		
2010s	SRF R&D & STF linac (S1-Global) ILC Global Design Effort Muon g-2 ring, moved and revived	KEK ILC/GDE Fermilab		

A. Yamamoto, 2022/9/7

ł

Ph. Lebrun, JUAS-2019

Advances in Particle Accelerators based on SC Technology 超伝導技術を基盤とした粒子加速器の飛躍的発展:LHC

Circular/Linear Collider Accelerators realized

円形・直線衝突型粒子加速器の進展

E. Todesco, P. Ferracin, JUAS-2019

Arc

LSS

Arc

Particle Accelerators based on Lorentz Force

電磁気力 (Lorentz Force)を基盤とする粒子加速器

- Principle of circular accelerators:
 - Particles accelerated n the same circular orbit, multiple times, according to *Lorentz* Force: $F = e(E + v_x B)$
 - Particles accelerated \rightarrow momentum, **P**, increased
 - \rightarrow magnetic field increased ("synchro") to keep the particles on the same orbit of curvature ρ
- Electro field accelerates particles

電場で直線加速

$$F = e E$$

• Magnetic field steers the particles in a ~circular orbit

磁場で軌道制御

$$F = e v x B$$

LSS

H.A. Lorentz (1853-1928)

Arc

LSS

Arc

LSS

超伝導材の進展

CAS Vysoke-Tatry, 12-Sept-2019, SC magnets, GdR

Superconducting Phases and Applications 超伝導状態に応じた応用

- ・はじめに
- 加速器における応用
 - 超伝導(電)<u>磁石・</u>
 - 超伝導高周波加速<u>空洞</u>
- 粒子検出器における応用
 - <u>透明な磁石</u>、応用の広がり
 - 夜話トピックス-宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」
- ・未来への夢

Progress in SC Magnets for Collider Accelerators 超伝導(磁石)加速器の発展

KEK 加速器における 超伝導磁石応用の進展(例)

日本加速器学会・技術貢献賞 荻津透・中本建志、東憲男さん(2008年) Belle-JE +Particle Detector DCSR Cryostat QCSR Cryostat QCSR Cryostat

Courtesy, L. Rossi

CERN-HL-LHC, Nb3Sn 超伝導磁石, MgB2 超伝導送電

Courtesy, L. Rossi

CERN-HL-LHC, Nb3Sn 超伝導磁石, MgB2 超伝導送電

Future Energy-Frontier Colliders expected 粒子加速器の将来計画

Year of commissioning

A. Yamamoto, 2022/9/7

↓ ↓ 30 m

Multiple R&D Approaches for 16 T Dipole in Europe and US

US-MDPCT1b (Nb3Sn): Quench performance in TC1 and TC2 (July 2020) Compared with LHC Main Dipole (NbTi)

A. Yamamoto, 2022/9/7

26

Performance of series HL-LHC, 11T Dipole S1 to S4

同様な課題(Degradation)がHL-LHC, 11 T Dipole でも明らかになっている

Courtesy: A. Devred, G. Willering

Courtesy, L. Rossi

CERN-HL-LHC, Nb3Sn 超伝導磁石, MgB2 超伝導送電

Mechanical Constrain to consider Operating Margin

- Large Impact of Strain on Jc, reduction,
- Nb3Sn superconductor much different from NbTi

A.Godeke, F. Hellman, H.H.J ten Kate, and M.G.T. Mentink et al. Supercond. Sci. Technol. **31** (2018) 105011.

Personal Scope for HFM Development Timeline

for reaching Accelerator Construction and Operation

Timeline	~ 10		~ 20		~ 30			
12~14T <mark>Nb₃Sn</mark>	Short-model R&D	Proto/P	re-series	Const	ruction	Oper	ation	
14~16T <mark>Nb₃Sn</mark>	Short-model F	Short-model R&D Prototype			series	Construction		
>16 T <mark>Nb₃Sn + HTS</mark>	Fundamental and Short Model R&D Prototype/Pre							
Note: LHC experience: NbTi (10 T) R&D started in 1980's > (8.3 T) Production started in late 1990's, in ~ 15 years → LHC Operation started in later 2000's, in ~ 25 years								

高磁場磁石におけるNbTi, Nb3Sn, HTS の複合

A. Yamamoto, 2022/9/7

- ・はじめに
- ・加速器における応用
 - 超伝導(電)磁石·
 - 超伝導高周波加速空洞
- 粒子検出器における応用
 - <u>透明な磁石</u>、応用の広がり
 - 夜話トピックス-宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」
- ・未来への夢

Potential Nb and Nb3Sn Applications (@ < B_{c2})for Superconducting RF Cavity

4

Material	Т _с [К]	B _c (0) [T]	B _{c1} (0) [T]	B _{sh} (0) [T]	B _{c2} (0) [T]	B _{C2}	
Nb	9.2	(0.25)	0.18	0.21	0.28		
NbTi	9.2 ~9.5		0.067		11.5 ~ 14	B _{sh} B _{C1}	
Nb₃Sn	18.3	(0.54)	(0.05)	0.43	28 ~30		
MgB ₂	39	(0.43)	(0.03)	0.31	39		
Application				RF	Magnet	4	
		1	I		1		E Meissner state for SRF

超伝導加速空洞

- 高周波表皮抵抗が低く、電力効率が高い
- ・ 共振特性係数(Q₀)が高く(~10¹⁰)
- ビームパルス長を長くできる(~10⁻³秒)
- 大口径化でき(> 50 mm)
- 動作周波数を~1 GHzレベルに最適化
- ビーム強度・衝突輝度を高め易い.

Courtesy: S. Michizono

~ 1.3 GHz, SRF Accelerators, worldwide

Courtesy: S. Michizono

~ 1.3 GHz, SRF Accelerators, worldwide

SRF: Key Technology at ILC:

Parameters	Value
Beam Energy	125 GeV
Beam Rep. rate	5 Hz
Pulse duration	0.73 ms
Av. field gradient	$31.5 (35) \text{ MV/m +/-}20\%$ $Q_0 = 1E10 (1.6E10)$
#9-cell cavity (1.3 m)	~ 8,000 (x 1.1)
# cryomodule (12.m)	~ 900
# Klystron	~ 240
	39

KEK-STF: 超伝導加速器によるビーム加速の達成

図 11. KEK-SRF 試験施設 (STF). 加速電界 33 MV/m によるビーム加速に成功.

Dump 2 384.9 MeV @Max. Cavity 2019-4-7~8 Coupler STF-2 CM2a Cold box Tune STF-2 CM Bend Dump Cold box Capture CM RF Gun incl. laser system

KEK ERL

 Compact Energy Recovery ライナック

理研重イオン超伝導ライナック

QST-IFMIF 超伝導ライナック

- ・はじめに
- ・加速器における応用
 - 超伝導(電)<u>磁石•</u>
 - 超伝導高周波加速空洞
- 粒子検出器における応用
 - <u>透明な磁石</u>、応用の広がり
 - 夜話トピックス-宇宙観測への超伝導技術応用:
 - ・「南極周回気球・超伝導スペクトロメータによる宇宙起源反粒子探索」
- ・未来への夢

磁場中での荷電粒子の動き

History of Detector Solenoids

Experiment	Laboratory	<i>R</i> (m)	<i>B</i> (T)	I (kA)	$X(X_0)$	$E/M~({\rm kJ/kg})$	<i>E</i> (MJ)	Year
PLUTO	DESY	0.75	2.2	1.3	4.0	2.3	4.1	1972
ISR point 1	CERN	0.85	1.5	2	1.1	1.8	3.0	1977
CELLO	Saclay/DESY	0.85	1.5	3	0.6	5.0	7.0	1978
PEP4/TPC	LBL/SLAC	1.1	1.5	2.27	0.83	7.6	11	1983
CDF	KEK/FNAL	1.5	1.6	5	0.84	5.4	30	1984
TOPAZ	KEK	1.45	1.2	3.65	0.70	4.3	19	1984
VENUS	KEK	1.75	0.75	4	0.52	2.8	11.7	1985
AMY	KEK	1.2	3	5	N/A	N/A	40	1985
CLEO-II	Cornell	1.55	1.5	3.3	2.5	3.7	25	1988
ALEPH	Saclay/CERN	2.75	1.5	5	2.0	5.5	136	1987
DELPHI	RAL/CERN	2.8	1.2	5	1.7	4.2	110	1988
ZEUS	INFN/DESY	1.5	1.8	5	0.9	5.2	10.5	1988
H1	RAL/DESY	2.8	1.2	5	1.8	4.8	120	1990
BESS	KEK	0.5	1.2	0.38	0.2	6.6	0.25	1990
WASA	KEK/Uppsala	0.25	1.3	0.9	0.18	6	0.12	1996
BABAR	INFN/SLAC	1.5	1.5	6.83	0.5	N/A	27	1997
D0	FNAL	0.6	2.0	4.85	0.9	3.7	5.6	1998
BELLE	KEK	1.8	1.5	4.16	N/A	5.3	37	1998
ATLAS-CS	KEK/CERN	1.25	2.0	7.8	0.66	7.1	38	2001
BESS-polar	KEK	0.45	1.0	0.48	0.156	9.2	0.34	2005
CMS	CMS/CERN	3.0	4.0	19.5	N/A	12	2600	2007
BESIII	IHEP (China)	1.45	1.0	5	N/A	2.6	9.5	2008
CMD-3	BINP	0.35	1.5	1	0.085	8.2	0.31	2009

なぜ超伝導が必要か?

- 大規模磁場空間:
 - ・運動量分析
 - 磁場空間:できる限り、強く、大きく
 - ・物質の低減
 - 粒子軌道を乱さない、相互作用しない
 - 透明性:コイルをできる限り少ない物質で
 - ・エネルギーの節約
- 課題
 - •大きな蓄積エネルギー
 - 一つの磁石

粒子検出器用超伝導磁石における基本式

- Deflection:
- Sagitta:
- Magnetic Field: rot $B = \mu_0 J$
- Stored Energy: $E = 1/2\mu_0 \text{ Int. } B^2 dv$
- Coil Mass: $M = V_{coil} \gamma$
- Pressure:
- Hoop Stress:
- Wall thickness:
- E/M ratio:

t = (R/σ_h) • p

 $dp/p \sim \{B \cdot R\}^{-1}$

 $s \sim \{B \cdot R^2\}^{-1}$

 $p = B^2/2\mu_0$

 $\sigma_{\text{hoop}} = (R/t) \cdot p$

- $E/M = (B^2/2\mu_0) \cdot R/2\gamma$
- $= \sigma_h/2\gamma \rightarrow high-stress / material-density !!$

- s [m] = r (l cosq/2)= ~ prq²/8 = qBL²/8r = 0.3 BL²/8r [Tm²/GeV/c]
- **B**: magnetic field magnetic permeability μ_0 : magnetic volume V_{field}: V_{coil}: coil volume effective density .γ: hoop stress $.\sigma_{hoop}$: R: coil radius coil thickness t:

伝播を速く→ 均等に温度上昇(エネルギー吸収)

伝導冷却(冷却管からの伝導冷却)

クライオスタットを軽く、透明に、、

■ 2層流He 強制フロー or サーモサイフォン

E/M → Enthalpy (H) H: Integral $\{C_p\}$ dT 20 kJ/kg → ~100 K 10 kJ/kg → ~ 80 K 5 kJ/kg → ~ 65 K

A. Yamamoto, 2022/9/7

48

LHC + ATLAS, – CMS

- Reinforcement of AI
 - with keeping low resistivity
- Uniform reinforcement
 - Micro-alloying and cold work
 - ATLAS-CS

- Welding Al-Alloy with pure-Al
- CMS

Pure Al Strips

- 磁場を強く、磁石物質を透明に、、、
 磁場(B): rot B = µ₀ J
 透明度・輻射長(X) t ∝ RB²/(E/M) ∝ γ/σ_h
 E/M(蓄積エネルギー/コイル重量)を高く
 超伝導線を強く、、、
- クエンチ保護:
 - 伝播を速く→ 均等に温度上昇(エネルギー吸収)
- 伝導冷却(冷却管からの伝導冷却)
 - 2層流He 強制フロー or サーモサイフォン
- クライオスタットを軽く、透明に、、

周方向クエンチ伝播速度: $V\phi = (J/\gamma C) \cdot \{L_0 T_s/(T_c - T_o)\}^{1/2}$ 軸方向クエンチ伝播速度: $V_z = (k_z/k_{\phi})^{1/2} \cdot v_{\phi}$

TEMP [K]

Pure A

図 15. 純アルミ熱伝導特性(極大 @ 10K)。

- 磁場を強く、磁石物質を透明に、、、
 磁場(B): rot B = µ₀J
 透明度・輻射長(X) t ∝ RB²/(E/M) ∝ γ/σ_h
 E/M(蓄積エネルギー/コイル重量)を高く
 - ・超伝導線を強く、、、
- クエンチ保護:
 - ・ 伝播を速く → 均等に温度上昇(エネルギー吸収)
- 伝導冷却(冷却管からの伝導冷却)
 - 2 層流He 強制フロー or サーモサイフォン
- クライオスタットを軽く、透明に、、

応用展開(例)

アルミ安定化磁石技術

- 宇宙観測
- ・ミュオンビーム実験
- 原子核実験
 - 理研・SC サイクロトロン

伝導冷却技術

- 重粒子線医療ビームライン
- 重力波探索実験

アウトライン

- ・はじめに
- ・加速器における応用
 - 超伝導(電)磁石・
 - 超伝導高周波加速空洞
- ・粒子検出器における応用
 - ・ 透明な磁石、応用の広がり
 - 夜話トピックス— 宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」

南極周回気球・超伝導スペクトロメータ- による 宇宙起源反粒子の探索

Balloon-borne Experiment with a Superconducting Spectrometer: BESS

History to Search for Cosmic-ray Antiparticle

1979: 1981: 1985:	Fist Observation (Golden et al) Excessive Flux? (Buffington et al) ASTROMAG Proposal of thin solenoid spectrometer	
1987:	BESS proposed by Prof. Orito	
1993:	BESS: 6 antiproton observed	
1006	Energy spectrum	
1996:	Solar Minimum Primary origin?	
1998:	AMS-1	
2000:	Solar maximum	
2004:	BESS-Polar, PAMELA	Jet-type Drift chamber Superconducting Col
2007 /8	Solar Minimum, BESS-Polar II	Inner Drift Chamber Meddle TOF
20011:	AMS-02	Counter Silica Aerogel Cherenkov Counter 00.5 1m

反粒子で探る初期宇宙の姿

反物質の謎?

- 観測されていない
- (He/He の存在比上限値: 7x10⁻⁷)
- ・ 宇宙初期に消滅?

反<mark>陽子</mark>?

- 僅かに観測されている (陽子に対して<10⁻⁴)
- ・ ほとんどは、宇宙線の衝突を起源?
 → 二次粒子
- ・ 宇宙初期現象を起源?
 → ミニ(原始)ブラックホールの蒸発?

宇宙から消滅した?反物質--- 宇宙線観測を通した直接探索

宇宙線衝突を起源とした二次的な反陽子がほとんど。しかし 低エネルギーでは、ミニBHを起源とする反陽子が見つかるかもしれない。 反陽子の観測を通して初期宇宙の素粒子像を探る!

宇宙粒子線の観測:宇宙・気球・地上・地下

南極での観測の特色: 地球地場が垂直 →電流と磁力線が並行(相互作用しない) →荷電粒子が地上に到達しやすい

A achievment for a cosmic-ray spectrometer for scientific ballooning

Coil thickness/diameter

~ 0.34%

thickness/diameter

~ 0.2%

A. Yamamoto, 15/06/17

SR2, CEA-Saclay

磁極近くの上空(気球)で宇宙線を観測する

• 低エネルギー粒子が地球に降り注ぐ、磁極近くでの観測が有効

大気の影響を受けにくい 上空(>30 km)での観測

Progress of BESS Experiment

11 scientific balloon flights over Canada and over Antarctica

- マクマード基地
- •標準時:ニュージーランド時間
- •NZ⇔2,3便/day
- •フライト時間:6~8hour

フライト準備@南極

A. Yamamoto, 2022/9/7

観測システムの組み上げ

78

ヒーターを炊いて、超伝導ループを遮断
 外部から電流を供給して充電
 ヒータをオフして、超伝導ループを形成
 外部からの電流をオフ、電源切り離し
 永久電流磁場の達成

ヒーターを炊いて、超伝導ループを遮断
 外部から電流を供給して充電
 ヒータをオフして、超伝導ループを形成
 外部からの電流をオフ、電源切り離し
 永久電流磁場の達成

BESS Polar-IIL Launch ^{アウト} 放球場への移動

&5 Yamamoto, 2022/9/7

南極フライト・打ち上げ

Movie

BESS-Polar II Launch - December 22, 2007

Scientific Ballooning of BESS Detector at Antarctica - for Cosmic-Ray Observation -

Williams Field, McMurdo, Movie in Antarctica 12/23 2007 A. Yamamoto 2022/9/7

BESS-Polar Long Duration Ballon Flights over ANtarctica

New Spectrometer with a ultra thin solenoid, with solar power system

01)

BESS-Polar Thin Solenoid

A. Yamamoto, 2022/9/7

First Flight 2004.12.13-22		Second Flight 2007.12.23-1.2	
	BESS-Polar I	BESS-Polar II	32
Launch date	Dec. 13 th ,2004	Dec. 23 rd , 2007	
Observation time	8.5 days	24.5 days	
Cosmic-ray observed	9 x 10 ⁸ events	4.7 x 10 ⁹ events	
Flight altitude	37~39km (5~4g/cm²)	~36km (6~5g/cm²)	
			89

End of BESS-Polar II Flight

- Flight termination January 20, 2008 ~30 days
- •Location 83 ° 51.23' S, 73° 5.47' W
- On West Antarctic ice sheet 225 nm from Patriot Hills Camp, 185 nm from AGO-2, 357 nm from South Pole

BESS-Polar II Recovery

BESS による達成

■ ビッグバン宇宙の痕跡を探る

- 宇宙線反粒子をプローブとしてミニブラックホールの痕跡を探る。
- 反物質の探索を通して、物質/反物質の非対称性を探る。

宇宙起源反粒子、反物質の探索

- 超伝導スペクトロメータにより精密な質量同定・高感度を実現
- 太陽活動の極小期(2007~8)に南極周回観測を実験。
- 宇宙線反陽子の多くは衝突起源(二次的な粒子)
- 宇宙反物質の探索:上限比 10-8 に迫る探索(探索感度を3桁深める)
- TOPAZ → BESSS-Polar で開発された技術 → LHC-ATLAS への展開
 - 加速器科学 → 宇宙観測への応用 → 加速器科学への再応用

LHC: ATLAS Central Solenoid

using the same technology

アウトライン

- ・はじめに
- ・加速器における応用
 - 超伝導(電)磁石・
 - 超伝導高周波加速空洞
- ・粒子検出器における応用
 - ・ 透明な磁石、応用の広がり
 - ・夜話トピックス—宇宙観測への超伝導技術応用:
 - ・「<u>南極周回気球・超伝導スペクトロメータ</u>による宇宙起源反粒子探索」

超伝導・高エネルギー加速器の将来

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10¹⁰) and high-G (31.5 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV \rightarrow 3 TeV) :

• NRF: Very high G (100 MV/m) for energy frontier with compactness

<u>Circular Colliders :</u>

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 - Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

FCC-pp (2 x 50 TeV):

- High-field SC magnets (SCM: 16 T) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 TeV):

- High-field SCM (12 T) for energy frontier
- SRF: beam acceleration

(EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

- SRF and NRF with very high-field SCM
- AHighenefficiency/at > 3 TeV, although short life-time.

未来への願い・夢

- 全世界的な規模で加速器将来計画に向けた技術開発が進められている。超伝導技術は、その実現を先導する要となる。超伝導技術がさらに発展し、社会・産業貢献への道を切り拓くことを願っている。
- ●「科学技術・教育・文化」はこれからの日本が担うべき国際的な大きな役割。高エネルギー加速器、粒子物理学の分野には、それを牽引し推進するポテンシャルがある。超伝導技術はその要となる。
- 欧州原子核研究機構(CERN)の設立理念「Science for Peace(平和のための科学)」に学び、日本に先端基礎科学・先端技術の開拓を担う国際研究機関の実現を「未来への夢」とし、次世代へと引き継ぎたい。

感謝

日本における粒子加速器・超伝導技術応用の道を切り拓かれ、私 達をご指導くださった「平林洋美先生」、「小島融三先生」に心より感 謝を捧げます。

私が素粒子物理、加速器における超伝導技術開発・応用に取り組 みを続けた半世紀、多くの研究者、技術者、企業の皆様からのご指 導、協力に感謝致します。

そして、次世代を担う皆様に、「未来への夢」を託します。