超伝導低温エ学センター 鈴木 研人

はじめに

- タイトルは「超伝導電磁石」と一般化されていますが、本講義スライド/テキストでは「加速器応用」を意識して作成しています。
- しかしながら、これから述べていきますが、超伝導電磁石の構成要素となる超伝導線材 (ケーブル)の電磁現象や熱安定性については、加速器以外の他応用分野においても共 通の課題となります。
- 講義時間が限られているため、各項目について深く立ち入りません。また、以下の項目についてはこの後の講義でも網羅されていますので、そちらで学習いただけますようお願いします。
 - 超伝導電磁石の磁場設計:「5. SuperKEKB 超伝導電磁石システム」
 - 超伝導電磁石の構造設計:「6. HL-LHC 計画とKEKにおける超伝導磁石開発」
- •本講義の位置付けは、この後に続く講義の「入口」と捉えていただければと思います。
- 最後に:講義の途中でも構いませんから、質問がある場合は遠慮なく挙手してください。

教科書 訂正

- p. 3-14 キーストーン角式:
 - $\alpha_t = \tan^{-1}(1/2(t_2 t_1)/w) \rightarrow \alpha_t = \tan^{-1}((t_2 t_1)/w)$
- p. 3-19 MPZ計算条件:
 - 「電流密度は J_c と一致させている」 → 「なお $F=0.8xJ_c$ (at B=6T)としている」
 - 「ここで求めているMPZおよびMQEは臨界電流 I_c に匹敵する電流値…」→「ここで求めている MPZおよびMQEは $I=0.8I_c$ (at 6 T)に匹敵する電流値」
- p. 3-24 CLIQのQPHとの併用に関して :
 - 「MQXFの場合、遮断時定数を短くする目的でCLIQに加えてQPHも同時使用した保護設計となっている」→「低磁場領域ではクエンチに至るまでのエンタルピーマージンが大きくなり、CLIQのみではコイル全体の常伝導への転移が十分でないため、 MQXFの場合QPHも併用した保護設計となっている。」

ウェブには修正済のものをアップロード・公開予定です

- 実用的な超伝導体の特性
 - 前講義のおさらい
 - 磁化モデル
 - 磁気安定性

クエンチ保護
- MPZ・MQE
- クエンチ検出と保護

- ・超伝導ケーブル「NbTi」の特性
 - 極細多芯線・Rutherford cable
 - 超伝導ケーブルの電磁現象

1. 実用的な超伝導体の特性

- 前講義のおさらい
- 磁化モデル (Critical state model)
- 磁気安定性 (Flux jump)

前講義のおさらい – GL方程式

• 超伝導状態:巨視的な波動関数Ψ=秩序変数

自由エネルギー $\mathcal{F}(M) = \mathcal{F}_0 + \alpha M^2 + \frac{\beta}{2}M^4$ 強磁性体の場合

$$\mathcal{F}(|\Psi|) = \mathcal{F}_0 + \int \left[\alpha |\Psi(r)|^2 + \frac{\beta}{2} |\Psi(r)|^4 \right] dV + \int \frac{\hbar^2}{2m^*} |\nabla \Psi(r)|^2 dV$$
$$\alpha = a(T - T_c)$$

磁場が存在する場合、 $\nabla \rightarrow \nabla - \frac{ie^*}{\hbar}$ とし、極小条件($\delta \mathcal{F} = 0$)を 求めれば Ψ の決定方程式が導かれる

$$-\frac{\hbar}{2m^*} \left(\nabla - \frac{ie^*}{\hbar} \right) \Psi(r) + \alpha \Psi(r) + \beta |\Psi(r)|^2 \Psi(r) = 0 \quad \text{GL方程式}$$

前講義のおさらい – GLパラメータ

一次元に帰着したGL方程式で磁場が存在しない場合のψを解くと:

$$\Psi(x) = \tanh \frac{x}{\sqrt{2\xi}}$$

GLコヒーレンス長 $\xi(T) = \left(\frac{\hbar^2}{2m^* aT_c}\right)^{1/2} \left(1 - \frac{T}{T_c}\right)^{-1/2}$

超伝導状態はそのスケールで回復

ロンドン侵入長
$$\lambda(T) = \sqrt{\frac{m^*}{\mu_0 e^{*2} |\Psi|^2}} = \left(\frac{m^*\beta}{\mu_0 * e^{*2} a T_c}\right)^{1/2} \left(1 - \frac{T}{T_c}\right)^{-1/2}$$

磁場は入のスケールで超伝導に侵入

GLパラメータ(定数)
$$\kappa \equiv \frac{\lambda}{\xi} = \frac{m^*}{e^*\hbar} \left(\frac{2\beta}{\mu_0}\right)^{1/2} \begin{bmatrix} <\frac{1}{\sqrt{2}} : 第I種 \\ >\frac{1}{\sqrt{2}} : 第I種 \end{bmatrix}$$

第I種超伝導体 / 第II種超伝導体

自由エネルギー

- 第I種超伝導体の場合
 - 界面エネルギーが正
 - マイスナー状態が支配的
 - 磁場の侵入に伴い自由エネルギーが増加

- 第II種超伝導体の場合
 - 表面エネルギーが負
 - マイスナー状態と混合状態(渦糸状態)
 - 常伝導体との界面が多いほど安定

第I種超伝導体 / 第II種超伝導体

- 第I種超伝導体の場合
 - 界面エネルギーが正
 - マイスナー状態が支配的
 - 磁場の侵入に伴い自由エネルギーが増加

臨界磁場*B_c* = O(10 mT) at *T*=0

- 第II種超伝導体の場合
 - 表面エネルギーが負
 - マイスナー状態と混合状態(渦糸状態)
 - 常伝導体との界面が多いほど安定

上部臨界磁場*B_{c2}* = 10 T at *T*=0

OHO'22

第I種超伝導体 / 第II種超伝導体

第||種超伝導体の臨界電流密度

- ・混合状態 (B_{c1}<B<B_{c2}) においては磁場が「磁束: φ₀=h/2e」
 という形で侵入
- ・この状態で電流を流すと<u>ローレンツカ</u>によって磁束が移動 $\vec{E} = \frac{\phi_0 B}{\eta} \vec{J} \quad \eta: 摩擦係数$
 - この現象を「磁束フロー」という
- 磁束フローが生じると起電力によって抵抗が生じ、ohmicな熱 損失を生じる
- 磁束フローが生じる電流(密度)=臨界電流(密度) (depining critical current)という*1

*1) 前講義からクーパー対が壊れる電流密度を臨界電流密度(deparing critical current) と定義したかもしれないが、厳密には両者は一致しない。

OHO'22

ピン留め効果の実現

- ・磁束フロー抵抗の発生は実用上好ましくないので、大電流を通電したとしても磁束が動かないように強くピン留めする必要がある
- ピン留め力は渦糸と「系の乱れ」との相互作用によって生じる

(磁束が常伝導領域に入り込んだ系のエネルギー)

< (磁束が超伝導領域に入り込んだ系のエネルギー)

OHO'22

=> 要素的ピン留め力:
$$f_p = \frac{\Delta U}{\Delta x} \sim \frac{U_p}{2a_0} \propto \xi \frac{B_c^2}{\mu_0} (1 - \frac{B}{B_{c2}})$$
 $B_{c2} = \sqrt{2\kappa}B_c$

=> 巨視的なピン留め力: $F_{pc} = J_c B \propto N_p f_p$ _{ピン留めが強い場合}

ピン留めサイト (ピン留め中心)

- 不純物、格子欠陥、<u>常伝導析出物</u>、<u>結晶粒界</u>など NbTi Nb₃Sn

ピン留め力が強い超伝導体=硬い超伝導体

2022/9/6

硬い超伝導体=実用超伝導体

2022/9/6

https://nationalmaglab.org/images/magnet_development/asc/plots

13

実用超伝導体のハドロンコライダーへの応用

加速器応用という観点からはB = 5-10Tの磁場を達成できる超伝導体が実用的といえる 私見ですが。。 B > 10Tを見据えた高磁場化はさらにその次の展開

臨界面 (Critical surface)

- 臨界温度(転移温度): *T_c* at 0 T
 - NbTi : 9.2 K
 - Nb₃Sn : 18.3 K
- 上部臨界磁場:B_{c2} at O K
 - NbTi : 14.5 T
 - Nb₃Sn : 28 T
- 臨界電流密度 : J_c at 4.2 K
 - NbTi : ~3000 A/mm² at 5 T
 - Nb₃Sn : ~1500 A/mm² at 16 T

←FCC-hh target

NbTi (46.5 in weight %) 10000 8000 6000 Current density (A/mm²) 4000 2000 6 10 14 18 22 Magnetic field (T) 26 12 16 Nb₃Sn 10000 8000 6000 4000 ²⁰⁰⁰P^{*} Ferracin, EUCAS2017 6 10 14 15

> 12 Temperature (K)

18 (T) 22

26

16

Magnetic field (T)

1. 実用的な超伝導体の特性

- 前講義のおさらい
- 磁化モデル (Critical state model)
- 磁気安定性(Flux jump)

ピン留め効果の磁化への影響 $B = \mu_0(H + \mu_0)$ ピン留め効果あり(硬い超伝導体) ピン留め効果なし Applied Magnetic Field B_{c1} B_c B_{c2} Applied Magnetic Field B_{c2} Magnetization B_{c1} Flux Density Magnetization Superconductor Trapped 不可逆 Flux 可逆

• $B < B_{c1}$:

B_{c1}

B_c

 B_{c2}

Applied Magnetic Field

Flux Density

- マイスナー状態。磁場の内部への侵入を完全 に排斥 $(M \propto B)$

b

- $B_{c1} < B < B_{c2}$:
 - 磁束が侵入するため磁化は減少 2022/9/6

• $B_{c1} < B < B_{c2}$:

B_{c1} B_c

 B_{c2}

Applied Magnetic Field

- ピン留めの影響で渦糸は自由に動くこと ができず磁束密度は緩やかな立ち上がり

-M

- 磁場を下げたとしても、ピン留めの影響 によって磁束は内部にトラップされる (残留磁化の発生)

b

硬い超伝導体の磁化メカニズム - <u>臨界状態モデル</u> (Bean-London model)

Critical-state model

- 前提条件
 - マイスナー状態は無視する。
 - 外部磁場は超伝導内部に流れる遮蔽電流によって遮蔽される。
 E = 0のため、遮蔽電流密度は臨界電流密度J_cに一致する。

- J_c は磁場や温度によらず一定とする

- 厚み2aの超伝導体の平板(slab)を考え、外部磁場 $\vec{B}_{ext} = (0, B_y, 0)$ を加えると

$$\frac{1}{\mu_0} \nabla \times \vec{B} = \vec{J_c} \quad \rightarrow \quad \frac{1}{\mu_0} \frac{\partial B_y}{\partial x} \vec{e_z} = J_c \vec{e_z}$$

2022/9/6

OHO'22

臨界状態モデルが示す磁化履歴

$$\int M = \frac{B_y}{\mu_0} \left(\frac{B_y}{2B_p} - 1 \right) \quad (0 \le B_y \le B_p)$$
$$M = -\frac{1}{2} J_c a \quad (B_y \ge B_p) \quad$$
磁化はslabのサイズaに比例

中心到達磁場 (Penetration field): $B_p = \mu_0 J_c a$

通電時の磁化の振る舞い

20

補足) 臨界面 - Critical surface

- 臨界状態モデルでは遮蔽電流密度は一定の臨界値J_cをとるとした
- 実際には J_c は温度と磁場に依存する $c_{\text{by} > U \subset W_{2} \subset W_{2$

- By Bottura (NbTi) :
$$J_c(B,T) = \frac{J_c^{ref} c_0 B^{\alpha-1}}{B_c(T)} \left(1 - \frac{B}{B_c(T)}\right)^{\beta} \left(1 - \left(\frac{T}{T_c}\right)^{1.7}\right)$$

 $B_c(T) = B_c(T=0) \left(1 - \left(\frac{T}{T_c}\right)^{1.7}\right), \quad J_c^{ref} = J_c(5T, 4.2K)$

Y.B.Kim et al., Phys.Rev.Lett 9.(1962) p306-309

超伝導体の磁化損失(Hysteresis loss)

Μ

 B_{p}

В

長手方向単位長あたり の積分とした

 $\delta \mathbf{x}$ のスライス部分で発生する熱損失: $p(x) = E(x)J_c\delta x = \dot{B}xJ_c\delta x$

Slabの単位体積あたりの熱損失: $P = \frac{1}{a} \int_0^a p(x) dx = \frac{1}{a} \dot{B} J_c \int_0^a x dx = \dot{B} \frac{J_c a}{2} = M$

単位時間あたりの熱損失(Wm⁻³): $P = \dot{B}M_{\underline{W}}$ 磁化の大きさに比例 励磁で発生する熱損失(Jm⁻³): $\int Pdt = M \int \dot{B}dt = MB$ ← 励磁速度に依存しない

- 1 サイクルであれば磁化曲線の面積に相当する

2022/9/6

23

1. 実用的な超伝導体の特性

- 前講義のおさらい
- 磁化モデル (Critical state model)
- 磁気安定性 (Flux jump)

磁束跳躍 (Flux jump)

1. 熱擾乱による温度上昇:
$$T \to T + \Delta T$$

2. 遮蔽電流密度の減少: $J_c(T) \to J_c(T + \Delta T) = J_c(T) - \Delta J_c$
3. 磁束のさらなる侵入: $B_{e1}(x) \to B_{e2}(x) = B_{e1}(x) - \Delta B_{e}(x) - J_{c}(T + \Delta T)$
 $\Rightarrow \Delta B_{e}(x) = \mu_0 \Delta J_c x$
4. 電場の発生: $\int (\nabla \times \vec{E}) \cdot d\vec{S} = -\int \frac{\Delta B_{e}(x)}{\Delta t} \cdot d\vec{S}$
 $\Rightarrow E(x) = -\mu_0 \frac{\Delta J_c}{\Delta t} \frac{1}{2}(a^2 - x^2)$
5. ジュール熱の発生: $\Delta g = \frac{1}{a} \int_0^a -J_c E(x) \Delta t dx$
6. 温度上昇: $\Delta T = \frac{\Delta Q}{c}$

2022/9/6

磁束跳躍 (Flux jump)

1. 熱擾乱による温度上昇: $T \rightarrow T + \Delta T$

- 2. 遮蔽電流密度の減少: $J_c(T) \rightarrow J_c(T + \Delta T) = J_c(T) \Delta J_c$
- 3. 磁束のさらなる侵入: $B_{e1}(x) \rightarrow B_{e2}(x) = B_{e1}(x) \Delta B_{e}(x)$ $\Rightarrow \Delta B_{e}(x) = \mu_{0} \Delta J_{c} x$ 4. 電場の発生: $\int (\nabla \times \vec{E}) \cdot d\vec{S} = -\int \frac{\Delta B_{e}(x)}{\Delta t} \cdot d\vec{S}$ $\Rightarrow E(x) = -\mu_{0} \frac{\Delta J_{c}}{\Delta t} \frac{1}{2} (a^{2} - x^{2})$ 5. ジュール熱の発生: $\Delta g = \frac{1}{a} \int_{0}^{a} -J_{c} E(x) \Delta t dx$

$$\Delta T$$

$$\Delta Q$$

$$Feedback$$

$$Joop$$

$$-\Delta J_c$$

$$\Delta B$$

磁束跳躍 – Adiabatic stability condition

$$\Delta Q + \Delta g = C\Delta T$$
 断熱条件下
他熱損失等 Flux jumpによる
ジュール熱損失
• 超伝導Slabの場合:
 $\Delta Q = C\Delta T - \Delta g \leftrightarrow \Delta Q = \left(C - \mu_0 J_c^2 a^2 \frac{1}{3(T_c - T_{op})}\right) \Delta T$
 $< 0 : 不安定$

- Slabサイズ(a)に課せられる条件

$$\ddagger: \quad a < \sqrt{\frac{3C(T_c - T_{op})}{\mu_0 J_c^2}}$$

 $r < \frac{\pi}{4}$

 $C(T_c - T_{op})$

ーダー 数10 µm

• 超伝導丸芯線の場合

- ワイヤー半径に課せられる条件:

$$\vec{B}_{ext} = \begin{pmatrix} 0 \\ B_y \\ 0 \end{pmatrix} I_c$$

$$J_c$$

 \vec{B}_{ext}

2022/9/6

磁束跳躍 – Dynamic stability condition

常伝導体内部の磁場(磁束)の拡散速度はMaxwell方程式($\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \frac{\rho}{\mu_0} \nabla \times \vec{B} = \vec{E}$)より、

$$D_m \nabla^2 \vec{B} = \frac{\partial \vec{B}}{\partial t}$$
 $(D_m = \mu_0 / \rho)$ ρ : 抵抗率

一方で熱の拡散速度は $D_t \nabla^2 T = \frac{\partial T}{\partial t}$ $(D_t = k/C)$ k: 熱伝導率

	NbTi	Copper	
	Normal state	B=0 T	B=6 T
D_t	2 x 10 ⁻⁵	1.1	0.3
D_m	0.5	8 x 10 ⁻⁵	3 x 10 ⁻⁴

2022/9/6

実用超伝導"線"の必要条件

- ・硬い超伝導体であること
 - 十分なピン留め力 → **High** *J*_c
- (丸芯線あれば) ワイヤー径を小さくすること
 - 磁化・磁化損失の影響を最小限に → Field quality, Stability
 - Flux jump (Adiabatic stability)の要求 → Stability
- 熱伝導の良い(抵抗の小さい)物質と併用すること
 - Flux jump (Dynamic stability) からの要求 → Stability

2. 超伝導ケーブル「NbTi」の特性

- 極細多芯線 (素線、Strand)
- Rutherford cable

超伝導素線 (Strand)

outreach.web.cern.ch/components/cable.h Strand filling factor : $\eta_{SC} = \frac{1}{1 + \lambda}$ Copper to SC area ratio : $\lambda = \frac{a_{Cu}}{a_{SC}}$

31

NbTi 極細多芯線 製造工程

P. Ferracin, EUCAS2017

2022/9/6

極細多芯線の結合電流(Coupling current)

ツイストすることで電磁特性が改善される

M.N. Wilson, Cryogenics 48 (2008) p381-395

時間的に変動する磁場下では銅母材を横切る形 でフィラメント間と結合する電流が流れる = Inter-filament coupling current (IFCC)

IFCCの磁化特性

• 結合電流によって生じる磁化特性

- 結合時定数:
$$\tau_{if} = \frac{\mu_0}{2\rho_{eff}} \left(\frac{L_p}{2\pi}\right)^2_{L_p}$$
, ッイストピッチ

- 磁化:
$$M_{if} = \frac{2}{\mu_0} \frac{dB_i}{dt} \tau_{if}$$

- 交流損失 (Wm⁻³):
$$P_{if} = M_{if}\dot{B} = \frac{\dot{B}^2}{\rho_{eff}} \left(\frac{L_p}{2\pi}\right)$$

M.N. Wilson, Cryogenics 48 (2008) p381-395

高抵抗 (poor contact) $\rho_{eff} = \rho_{Cu} \frac{1 + \eta_{SC}}{1 - \eta_{SC}}$

低抵抗 (good contact) $\rho_{eff} = \rho_{Cu} \frac{1 - \eta_{SC}}{1 + \eta_{SC}}$

→磁気不安定性の議論とは逆で熱損 失を減らすには抵抗率を上げる必要 がある

←IFCCが横切る際に感じる抵抗だけを高くする工夫

OHO'22

2

2. 超伝導ケーブル「NbTi」の特性

- 極細多芯線 (素線、Strand)
- Rutherford cable

極細多芯線を用いた超伝導ケーブル

加速器

OHO'22

利用

• 用途:大電流化

核融合

利用

- 多芯線1本あたりの臨界電流値 (4.2K, 5T) : Jc x A x λ = 1 kA
- 加速器利用では(せっかく超伝導体を使うなら)低インダクタンス化
 - ✓シンクロトロン電源の電力消費 (P=Ldl/dt x l)
 - ✓熱保護(クエンチ保護)の観点では遮断時定数 (τ =L/R)
- → 多芯線(素線)を寄せ集めた「ケーブル」を使う

Cable-in-conduit conductor (CICC)

K. Kizu, *et al.*, Fusion Engineering and design **84** (2008) p1058-1062

Rutherford cable

~10kA
NbTi Rutherford cable

NbTi Rutherford cable

NbTi Rutherford cable 幾何形状

- コイル成形のためのキーストーン角~1-2°
 - Compaction factorの導入。口径が小さい ほど技術的に難しくなる
- 電磁特性向上のため撚り合わせられる (Transpose)。ピッチ長 = 60 - 100 mm
- $J_E \sim 500 1000 \text{ A/mm}^2$

Rutherford cableの結合電流

- ケーブルとして組んだ場合、変動磁場に 対して素線間の結合電流が生じるが、こ れはInter-strand Coupling Current (ISCC)とも呼ばれる
 - 隣接抵抗 R_a - 交差抵抗 R_c 」 1-10 μΩ

ISCCの磁化特性 解析的な導出 by M.N.Wilson

交差抵抗*R*_cを介した結合の場合

・ 磁化:
$$M_n^c = -\frac{1}{120R_c} \frac{dB_n}{dt} L_{pc} N_s (N_s - 1) \frac{w}{t}$$

$$N_s: 素線数$$

$$w. f - Ju = L_{pc} U_{pc}$$

$$L_{pc}: \forall A = L_{pc}$$

• 交流損失(Wm⁻³):
$$P_{is,n} = M_n^c \dot{B} = \frac{1}{120R_c} \dot{B}^2 L_{pc} N_s (N_s - 1) \frac{w}{t}$$

・隣接抵抗R_aを介した結合の場合

- 磁化:
$$M_n^a = -\frac{1}{3R_a} \frac{dB_n}{dt} L_{pc} \frac{w}{t}$$

- 交流損失(Wm⁻³):
$$P_{is,a} = M_a^c \dot{B} = \frac{1}{3R_a} \dot{B}^2 L_{pc} \frac{w}{t}$$

Ġ

OHO'22

M.N.Wilson, JUAS 2017

B

結合電流による磁化の比較

	IFCC	ISCC	BICC*
結合時定数 [s]	0.01	0.1 -1	10 - 10 ⁵
磁化 (x <i>İ</i> b [T])	0.01	0.1 -1	_
実運用による影響	交流損失	交流損失 磁場精度 (Ramp rate dependence)	磁場精度 (Decay and snapback)
B:磁場の掃引速度			

(*) Boundary-Induced Coupling Current

SSC Dipole magnet

T. Ogitsu *et al.*, Particle Accelerator **57** (1997)

3. クエンチ保護 - MPZ・MQE - クエンチ検出と保護

常伝導転移 (Quench)

熱擾乱により温度上昇 →臨界面を超える →クエンチ(不可逆過程)

蓄積エネルギー: $E = \frac{1}{2}LI^2$ *か 加速器用超伝導電磁石の場合: E~ 1– 10MJ*

ジュール熱:G = RI² → ΔT = G/C ~ 3000-30000 K for Cu 1kg

導体の急激な温度上昇による焼損 (> Cuの融点 1356 K) 冷媒(e.g. 液体ヘリウム)気化の圧力上昇に伴う設備破壊 *etc*

適切な処理を怠ると

ヘリウム:液体→気体の体積膨張率=748

2022/9/6

Quench時ケーブル内部の分流過程

分流を考慮したクエンチによる超伝導体の振る舞いを正確に把握するには数値解析 (numerical)が必要 以降では、解析的なアプローチによってNbTiのクエンチ保護に必要な情報を集めていこう

$$C\frac{dT}{dt} = \nabla \cdot (k\nabla T) + \rho J^2 + g - g_q$$

C: 単位堆積あたりの超伝導ケーブルの熱容量 (Volumetric Heat Capacity) [J/m³/K]

k: ケーブル熱伝導率 (Thermal conductivity) [W/m²/K]

ρ: ケーブル抵抗率 (Electrical resistivity) [Ωm]

J: 電流密度 (Current density) [A/m³]

g: ジュール熱以外の発熱 (Heat generation other than joule heat)[W/m³]

g_q: 冷媒による除熱 (Cooling power) [W/m³]

最小伝播領域 (MPZ: Minimum propagation zone)

$$\rho J^{2}Al_{nz} = 2kA \frac{T_{c} - T_{He}}{l_{nz}} + hpl_{nz}(T_{c} - T_{He})$$
A: Cable cross section
P: Perimeter
$$l_{mpz} = \begin{cases} \sqrt{\frac{2k(T_{c} - T_{He})}{\rho J^{2}} + \frac{hp}{A}(T_{c} - T_{He})} \\ \sqrt{\frac{2k(T_{c} - T_{He})}{\rho J^{2}}} (\text{断熱条件時}) \\ \sqrt{\frac{2k(T_{c} - T_{He})}{\rho J^{2}}} (\text{断熱条件時}) \\ \overline{D}_{J}^{2} \text{BDI募体からの伝導冷却が} \\ \overline{D}_{Lich} \text{BICADOW}} \end{cases}$$
Kormal zone
$$\frac{1}{\sqrt{\frac{2k(T_{c} - T_{He})}{\rho J^{2}}}} (\text{Missing the second sec$$

転移温度

Α-

NbTi Rutherford cableのMPZ

1次元計算

$$l_{MPZ} = \sqrt{\frac{2k(T_c - T_{He})}{\rho(RRR, B, T_c)J^2}}$$
断熱近似

 $RRR = \rho \left(293K \right) / \rho \left(10K \right)$

Rutherford cable : MPZ ~ 1 – 10 mm

2022/9/6

OHO'22

最小クエンチエネルギー (MQE : Minimum Quench Energy) A.K. Ghosh et al.,

MPZを形成するのに必要なエネルギー

$$MQE = A \int L_{MPZ} \int_{T_{He}}^{T_c} C \, dT dz$$

入熱 > MQE ?

- AC losses, Wire motion, Flux jumping
 - 超伝導電磁石の特性に依存 (Intrinsic)
 - ✓ AC losses (交流損失)
 - ・ヒステリシス損失
 - ・IFCC(フィラメント間結合)損失
 - ・ISCC(素線間結合)損失
 - ✓ Flux jump
 - ・フィラメント径 5µm → 0.1mJ/cm³
 - ✔ Wire motion (機械擾乱)
 - ・ローレンツカの影響
 - →高磁場・大電流運用で問題化

素線面積1 mm² の長さ1 mmにわたって 4kN/m (10T, 400A/mm²)の力が働く場合 → 40 mJ/cm³ (or 40 µJ)

L. Bottura, CERN Yellow report CERN-2014-005

高磁場運用~10T MQEに匹敵

クエンチ伝播速度 - Quench Propagation Velocity

$$C\frac{dT}{dt} = \nabla \cdot (k\nabla T) + \rho J^{2} + g - g_{q}$$

$$\int g_{q} = g = 0 \text{ (断熱近似)}$$

$$1 次元に帰着$$

$$\partial T / \partial t = -v \, dT / dx$$

$$\frac{d^{2}T}{dx^{2}} + \frac{vC}{k} \frac{dT}{dx} + \frac{\rho J^{2}}{k} = 0$$

$$\int Tc \supset v \subset Fk \langle Tc \supset v \subset Fk \rangle$$

$$v = \frac{J}{C} \sqrt{\frac{\rho k}{T_{c} - T_{He}}}$$
To compare the set of the

NbTi rutherford cable

ロント

3. クエンチ保護 - MPZ・MQE - クエンチ検出と保護

クエンチ検出 – バランス電圧検出法

- 磁石の両端と中点(コイル2個で構成されている場合は連結部)のバランス電圧の立ち上がりをブリッジ回路によって検出
- ノイズによる誤検出を防ぐため、検出閾値と判定時間を設ける
 - NbTi magnet: $V_{threshold}$ =0.1 V, t_{valid} =10 ms

MIITs

エネルギーバランスの式より:

$$J^{2}dt = \frac{C}{\rho}dT \Leftrightarrow I^{2}dt = \frac{CA^{2}}{\rho}dT$$

両辺を時間積分:

$$\underbrace{MIITs}_{heter} = \int_{0}^{te} I^{2}(t)dt = A^{2} \int_{T_{He}}^{T_{max}} \frac{C(T)}{\rho(RRR, B, T)} dT$$

単位: MAAs, kA²s, 10⁶ As

MIITsとホットスポット温度の関係

MIITsを用いた磁石保護の考え方

- 電流遮断: $I(t) = I_{op}e^{-\frac{t}{\tau}}$
- MIITs = $\int_0^{te} I^2(t) dt = I_{op}^2 \tau/2$
- I_{op} =13 kA とした場合:MIITs (t>0) < 30 $\rightarrow \tau$ < 350 ms

超伝導電磁石の保護 – 保護抵抗

- ・磁石のインダクタンス *L*=25 mH とした場合 - 蓄積エネルギー: $\frac{L}{2}I_{op}^2 \sim 2$ MJ at I_{op} =13 kA)
- 電流を *τ* =L/R <350 msで遮断したい
 - 保護抵抗 *R_{dump}*を並列に接続
 - R_{dump} > 72 m $\Omega \rightarrow$ 最大電圧~1kV at 13 kA

Simulation w/ R_{dump} =75 m Ω

超伝導電磁石の保護 – 保護ヒーター(QPH)

HL-LHC D1磁石の例

Active protection !!

M. Sugano *et al.*, IEEE TASC (2022)

超伝導電磁石の保護 – 保護ヒーター(QPH)

MIITs summary, I=13000A, 7m magnet

)	K. K.	2	K L L X		F.				K + + ×	
Success		Cas	e1	Cas	se2	Cas	se3	Cas	e4	Case	e5 j
		L						_)
Failure mode											
			MIITs counted from the end of t _{valid} (quench integral)								
		Success				23	3.9				
		Failure case1 Failure case2			25.0 25.0						
	Failure case3			26.6							
Failure case4 Failure case5		26.7									
		27.8									

QPH design technique

- ・ヒーター面積 (長さ)の決定:
 MPZ
 - Rutherford twist pitch
- ・ヒーター熱エネルギー密度:
 MQE
- ヒーター位置:
 - Quench velocity

これまで説明してきたanalytic approach のノウハウが生きてくる

Ê 0.08

202

- Nb3Snを用いた高磁場磁石では蓄積エネルギーはより高くなるため、いかに早く電流を遮断できるか、が重要
- CLIQ(Coupling-loss Induced Quench)を用いたクエンチ促 進技術
 - HL-LHCのNb₃Sn 4極磁石 (MQXF)に採用
- 低磁場領域ではクエンチまでのエンタルピーマージンが大きい
 - CLIQによる結合損失では不十分のため、実際にはクエンチ保 護ヒーターとの併用がなされている

Quench diagnostics – Localization technique

- バランス電圧の極性
 - Rough estimation (コイル単位)
- 電圧タップ
 - Fine segmented (ターン単位)
- クエンチアンテナ
 - 磁石ボアに設置されるピックアップコイルの信号解析
 - 非常に良い精度で周方向同定が可能長手方向にセグメント化する必要あり
- アコースティックエミッション
 - 超音波解析による位置同定法
 - 含浸コイル(Nb3Sn)の樹脂クラック検知
 - 設備投資が大変。。?

まとめ

- 超伝導電磁石の特性の理解=Multiphysics
 - 電磁気、熱力学、構造力学。。
- NbTi 線材は加速器の高性能化に大きく貢献してきた
 ✓ Fermilab -> HERA -> RICH -> LHC
- 日本で開発してきた/している 超伝導磁石についてはこの後の講義を聞きましょう!!
- 超伝導電磁石開発は実は今現在転換期に来ている(のだと思う)
 - Nb₃Sn磁石の初めての運用 in HL-LHC
 - REBCOといった高温超伝導体の実用化(まだできていない)
 - MgB2の実用化(R&Dははじまったばかり)

パラダイムシフトには - 新しいアイデアや力がもっと もっと必要。 一緒にはじめてみません か???

前講義のおさらい – 秩序変数の導入

- 系の状態の決定=<u>自由エネルギー牙が最小</u>
 - 低温における強磁性相の安定:スピン方向が 同じ向き (秩序がある)
 - 強磁性体の場合:秩序変数 = 磁化 M

$$\mathcal{F}(M,T) = \mathcal{F}(0,T) + \alpha M^2 + \frac{\beta}{2}M^4$$

- 相転移を起こすためには
$$(\alpha(T) = a(T - T_c))$$

$$\begin{split} T > T_c : \mathcal{F} &= 0 \ at \ M = 0 \qquad (m 秩序相) \\ T < T_c : \mathcal{F} &= 0 \ at \ M^2 = -\frac{a(T-T_c)}{\beta} \ (秩序相) \end{split}$$

ロンドン侵入長とGLコヒーレンス長

Material	λ (nm)	<i>ξ</i> (nm)
In	24	360
Pb	32	510
Sn	~30	170
Nb	32	39

代表的な超伝導材料

	Туре	Tc (K)	В _{с1} (Т)	В _{с2} (Т)	特徴		
Pb	I	7.2	-	0.08	-		
Nb	II	9.25	低温	0.4 超伝導体 LTS	_		
NbTi	Ш	9.5	-	11.5	合金•展性があり使いやすい		
Nb₃Sn	Ш	18	-	22.5	化合物のため脆い Wind-and-react		
REBa ₂ Cu ₃ O ₇	II	92	-	35 (B//ab)	脆い•配向性が重要 印加磁場の向きに対して臨界 磁場(電流)が変化		

NbTi E-J 曲線

$$E = E_0 \left(\frac{I_{sc}}{I_c}\right)^n$$

Maddockの安定化条件 - equal-area theorem

$$q_{J}'' + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) - \frac{wh}{A} (T - T_{he}) = 0 \qquad S = k \frac{\partial T}{\partial x}$$

$$k \left[\frac{wh}{A} (T - T_{he}) - q_{J}'' \right] = S \frac{\partial S}{\partial T} \qquad \int_{T_{op}}^{T_{oq}} k \left[\frac{wh}{A} (T - T_{he}) - q_{J}'' \right] = \int_{S_{op}}^{S_{oq}} S dS$$

$$T_{eq} = T_{op} + \frac{Aq_{J}''}{wh}$$

$$\int_{T_{op}}^{T_{eq}} \left[h (T - T_{he}) - \frac{A}{w} q_{J}'' \right] = 0$$

OHO'22

Estimation of the maximum voltage to ground for the 7m-long magnet

We define the highest $V_{\text{to ground }(X)}$ as the maximum voltage to ground at quench

NbTi Rutherford cableの製造工程

