4. 超伝導線材の研究開発

国立研究開発法人物質・材料研究機構
菊池章弘
超伝導線材の研究開発

1 はじめに.. 4－1

2 合金系線材（Nb-Ti）.. 4－1

3 A15型化合物系線材... 4－3
 3.1 Nb₃Sn線材.. 4－3
 3.2 Nb₃Al線材.. 4－6

4 鋼酸化物系線材.. 4－9
 4.1 Bi系線材（Bi-2212及びBi-2223）.. 4－9
 4.2 希土類系線材（RE-123）... 4－11

5 MgB₂線材.. 4－12

6 鉄系線材.. 4－15

参考文献... 4－15
超伝導線材の研究開発

1. はじめに

今日、MRIやNMR、高エネルギー粒子加速器などに実装されている実用超伝導線材の大部分は合金系のNb-Ti 線材であり、その優れた展延性とハンドリングの良さに由来する。高磁場NMRの内層コイルなど、Nb-Ti 線材で補えない高磁場用にはA15型化合物超伝導体であるNb₃Sn 線材が実用に供されている。Nb₃Sn 線材の製法は様々あるが、それぞれ長所と短所があり、現在も短所を補うような研究開発が行われている。その他のA15型化合物、耐ひずみ特性に優れるNb₃Alの線材開発は地道に進められている。1980 年代後半から世界的なフィーバーが巻き起こり、続々と臨界温度（Tc）が更新されてきた銅酸化物系超伝導体の線材開発は、現在は概ねBi系と希土類系の2種類に集約されている。国家プロジェクト等により一部の線材が応用機器に適用されているが、大きく市場に拓けるのは至っていない。2001年に行われたMgB₂超伝導体は、シンプルな化学組成から早期の実用化が期待されてきた。既に米国や韓国、イタリアなどから線材が市販され、オープン型MRIや電力供給ケーブルのデモンストレーションも行われている。最近は、液体水素の冷熱を利用した交流用応用機器への展開も期待が高まっている。2008年に同じく我が国で発見された鉄系超伝導体は、磁性を示す元素を含んだ超伝導が比較的高いTc を示すため、基礎物理性や理論物理分野から強い興味を集めた。

多くの関連物質が見出されているが、多くは鉄とともに毒性のあるヒ素を含むため、世界的に見ると線材開発は消極的である。しかし、原料が比較的安価であること、低温での上部臨界磁場（Bc2）が高いこと、金属系と同じくs波超伝導であるため銅酸化物系ほど結晶配向に敏感でないことなどの利点により、中国で比較的活発に線材開発が進められている。

このように、現在の超伝導線材の研究開発は、①合金系、②A15型化合物系、③銅酸化物系、④MgB₂、⑤鉄系の5つに大別される。本講義の前半（I）では、実用線材として現在の超伝導応用を担いつつも地道な研究開発が進められている①合金系（Nb-Ti）及び②A15型化合物系（Nb₃Sn、Nb₃Al）線材について、後半（II）では高いTcやBe₂を持ち実用化が期待される③銅酸化物系（RE-123、Bi-2212及びBi-2223）、④MgB₂及び⑤鉄系線材について、それぞれの材料学的特徴と超伝導特性、様々な線材化プロセスとそれらの長所短所、今後の開発課題や展望などを世界の動向と最新トピックスを交えながらわかりやすく解説する。

2. 合金系線材（Nb-Ti）

単体元素の超伝導体では、金属的性質を示すが磁場に依存する第1種超伝導体であることを多い。合金化することで第2種超伝導体となり臨界磁場が増加するため、強い磁場発生を念頭にした電磁石用線材として展延性に優れた合金系超伝導体が研究開発の対象となった。周期律表のⅣ族とⅤ族の組み合わせで高いTcとBe₂が得られる場合が多く、1961年頃にそれら合金系超伝導に関する論文が発表されている。我が国においては、1962年に旧科学技術庁金属材料技術研究所（現物質・材料研究機構（NIMS））の太刀川治治がNb-Zr 線材の研究に着手したと報告されている。現在では、Nb-Zr よりもBe₂が高く且つ加工性に優れるNb-Ti 線材が実用線材の主役となっている。

[図1. Nb-Ti平衡状態図]
図 2. Nb-Ti 組成と Tc 及び Be2 の関係。

図 3. Nb-Ti （8 相）中に析出した α-Ti [4]。

効に働くが、J. B. Vetrano と R. W. Boom は400℃程度の時効熱処理で図 3 に示すような微細なα-Ti 粒子を析出させる手法を見出し、高磁場下での臨界電流密度 (Jc) の向上に成功した [4]。図 3 は透過電子顕微鏡で撮影した Nb-Ti 綱材の断面写真である [6]。白色リボン状の組織がα-Tiである。

具体的な綱材製造は以下の工程で行われる。まず、アーク溶解あるいは電子ビーム溶解で所望の組成の Nb-Ti インゴットが溶製される。大きいものでは直径 300mm 程度になる。このインゴットを均質化熱処理、鍛造、溶体化熱処理を実施し、均質な Nb-Ti 合金ロッドを作製する。このロッドを安定材とする無酸素鋼管（交流用綱材ではキュプロニッケル管を用いる場合もある）に挿入してフタをして電子ビーム溶接し、静水圧プレスで隙間をなくした後に、熱間押出しを行う。その後に大型ドローベンチや伸線機で冷間引抜加工を実施して、六角形の複合線を作製する。この複合線を何本も束ねて再び無酸素鋼管に挿入し、電子ビーム溶接、熱間押出、冷間引抜加工が行われる。仕様に応じてこの工程を数回繰り返して、所定の本数と外径の Nb-Ti フィラメントが複合された極細多芯綱材が作製される。初期の Nb-Ti インゴットから最終的な極細多芯綱材に至るまで、Nb-Ti 合金は断面減少量として 10^8 ～ 10^9 にまでおよぶ強加工が加えられ、このような強加工に耐える優れた塑性加工性が Nb-Ti には備わっている。さらに、伸線加工途中では、前述した α-Ti を析出させるための時効熱処理が施される。α-Ti のサイズや粒子
間隔、形状などは強く磁束のビン止めに影響し、その状態は応力条件により変化する。従って、応用する磁場領域が高い Jc を得るために、加工条件を最適化する必要があり、詳細は製造メーカー各社のノウハウとして非公開とされている。その他、交流用多芯線材では Nb-Ti フィラメントがサブミクロン径まで細くなるため、α-Ti 粒子を析出させる時効処理を行うと、 Nb-Ti フィラメントと母材の鋼との間の界面反応で脆い CuTi 化合物が生成して線材加工に支障を与える。従って、時効処理を行うことができないために純 Nb 等をナノスケールで複合加工する人工ビン導入の研究開発が行われた[5, 6]。

3. A15 型化合物系線材

3.1. Nb₃Sn 線材

1953年、米国シカゴ大学の Hardy と Hulm は、種々の化合物（ホウ化物、窒化物、酸化物、ケイ化物、ゲルマニウム化合物など）が超伝導体であることを報告した[1]。当時に報告された様々な超伝導化合物の内、図 5 に示す結晶構造の B−タンゲステン型化合物の V₃Si で 17.1K と最も高い Tc が得られることを見出した。同結晶は伝統的な結晶構造分類法（Strukturbericht Designation）では A15 型とよばれ、A₃B の組成比で A 原子は互いに垂直な鎖状の配列を組んでいる。その後の研究で A 原子の鎖状の配列が低い Tc が得られる因子であると考えられている[8]。翌年の 1954年、

A15 型金属間化合物に注目した米国ベル研究所の Matthias らが Nb₃Sn を見出し、Tc が 18.05K と報告した[9]。さらに4年後の 1958年、同じく Matthias のグループが引き続き Nb₃Al を見出し、17.5K の Tc と報告した[10]。奇しくも Nb₃Sn と Nb₃Al は同じ研究グループにより見出された超伝導体で、結晶構造も同じ A15 型に分類される兄弟と言える。Nb₃Sn の線材化及びその高磁場特性の最初の検討は、発見者の Matthias の勧めで同僚の Kunzler らにより行われた[11]。金属間化合物である Nb₃Sn は機械的に脆く、線材化は容易でないことは Kunzler も論文の中でも述べている。そこで、延性のある金属管に Nb₃Sn 粉未を充填してforging加工、いわゆる PIT (Power-In-Tube) 法による線材化が試みられた。PIT 法は同じく脆い酸化物高温超伝導体やニホウ化マグネシウムの線材化プロセスとして現在も用いられている。その後、1965 ～1970年頃は図 6 に示すような純 Niオブの下側テーブの表面に溶融 Sn を連続的に
被覆する拡散レジームや、ヘスタロイなどの耐熱合金レジームの表面に気相還元法で Nb₃Sn を析出成膜するレジーム導体[13]の開発が進められ、15T 級超伝導マグネットが開発された。Nb₃Sn レジーム導体は、結晶配向制御を必要とするため、現在の次世代高温超伝導線材として期待されている希土類系コーティングコンダクターと類似の構造である。この Nb₃Sn レジーム導体は、Nb₃Sn の単相を得るために 1000℃程度の高温熱処理を行う。Kunzler らの PIT 線材も同様であった。高温熱処理では Nb₃Sn の粒成長が著しく、凝集のビン止め等に有効な結晶粒成長が少なくななる。このため、どちらの線材も化合物であるの臨界電流密度 (Jc) は高くない。また、極細多細芯構造では熱に温度差が大きく、マグネットの磁場の挾引速度は非常にゆっくりだった。加えてレジーム導体では誘起される磁界流の影響で磁界磁場の発生にも問題があった。この点は現在のコーティングコンダクターの重要課題となっており、レーザーで幅角切り込みを入れるスクラッチ加工等の検討が進められている[14]。Nb₃Sn においては、後にブロンズ法が発表されて速い磁界変化に対しても安定な極細多細芯構造の線材製造が可能となり、Nb₃Sn レジーム導体の開発はほぼ閉じた。ブロンズ法は、我が国における超伝導線材開発の先駆けである太刀川崇治らによる 1960 年代後半の V₃Ga の研究[15]が源流となる。太刀川らは、V レジームの表面に Ga を被覆して両者の間の拡散反応を研究していた。V₃Ga も Nb₃Sn と同じく A15 型化合物に分類され、その単相を得るには高温熱処理が必要である。ところが、被覆した Ga の表面に Cu をメッキしてから熟處理すると、650～750℃程度の比較的低温熱処理で V₃Ga の約 2,000℃の高温度熟処理が不要であることが判明することとなり、V₃Ga の研究が再活発化している。この Cu による拡散反応の促進は Nb₃Sn でも同様にその効果が確認された。その後、製造性のブロンズ（CuSn）合金と Nb を複合加工してその界面に Nb₃Sn 相を生成させる手法に変更していったことから、後に「ブロンズ法」と呼ばれるようになった。図 7 はその反応原理のイラストである。米国ブロックヘブン国立研究所の末永正樹らが、ブロンズ材に Ni を絞入した多細芯構造の Nb₃Sn 線材を先駆けて報告したのは 1972 年であった[16]。この複合加工法を用いて、さらに芯径が大幅に小さい径が細い極細多細芯線材の開発が世界的に取り組まれて Nb₃Sn 線材の实用化の一気に進んだ。冷間で延性のあるブロンズ合金は面心立方晶 (fcc) の a 相で、Cu 中に固溶される Sn 濃度が増えると Nb の拡散反応後に生成される Nb₃Sn が増加して臨界電流が増加する。このため、原料ブロンズ中の Sn 濃度の増加が検討され、14.0mass%、15.0mass%、16.0mass%とブロンズ原料の Sn 濃度が高められ、それらを用いた Nb₃Sn 線材が開発されてきた。NIMS における高磁場 NMR 開発では、その最内層コイルに 16mass%の高 Sn 濃度ブロンズを母材とした Nb₃Sn 多芯線材使用された（図 8）[17]。さらに仏国のカダラッシュで建設中の国際熱核融合実験炉 (ITER) や 2020 年に装置組立が完了した量子科学技術研究開発機構（QST）の

![図 7. Nb₃Sn の低温熱処理における拡散生成に対する酸素の効果。](image-url)

![図 8. 高 Sn 濃度 (16mass%) ブロンズを母材とした Nb₃Sn 多芯多細芯（平角線）。外周部は安定化のための無酸素銅。Nb 芯は 35,910 本。中央部は補強のための Ta[17]。](image-url)
JT-09Aでも同様に16mass%のSn濃度のプレノゾセンス法NiSn, 多元素材料が大半を占めている。このようにプレノゾセンス法NiSn, 多元素材料はNNF材料の組成を示すものであるが、その後の研究では、プレノゾセンス法NiSn, 多元素材料の組成がより多様化、組み合わせがより柔軟化することを目指すための実験が行われている。
図 10. チュープ法 Nb₃Sn 多芯線材の断面[20]。

薄肉の Cu で覆われた純 Sn 棒あるいは少量の Ti が添加された Sn 棒を挿入するとチュープ法と呼ばれています。我が国では明和電線で開発されて、NIMS が保有するハイプリッドマグネットの大口径超伝導マグネット（16T）にも応用された。その後同社は Nb₃Sn 線材の製造から撤退し、現在は小規模であるが米国 HyperTech Research 社などでは低コスト高 Jc 線材の候補として研究開発が継続され、図 10 に示すようなフィラメント径が比較的細い多芯線材も試作されている[20]。また、Cu 母材に複数の Nb 芯が埋め込まれた六角形モジュールを、同じく四角形の Cu 被覆 Sn モジュールを取り巻くように配置・組み上げる製法を DT（Distributed Tin）法と呼び、三菱電機や旧日立電線、神戸製鋼（及びそのグループ会社の JASTEC）などで研究開発が進められている[20]。現在は神戸製鋼グループで引き続き開発が進められている[20]。また、薄い Cu で被覆した Sn 棒をたくさん束ね、その中央に純 Sn 棒を配置して外周を Nb バリアで覆ったモジュールを作成し、これを複数本束ねる製法を RRP（Restack-Rod Process）法と呼び、米国 OST 社（現 Bruker-OST 社）から提案された[21]。図 11 に示すように、Nb バリアで覆われたモジュールが 1 つの超伝導フィラメントになり、小さな芯が Nb 芯は熱処理で Nb₃Sn となってすべてがつながる。超伝導フィラメント径が 50-100 ミクロンで大きくなるが、4.2K、15-16T で極めて高い Jc（非鋼部）が得られることから、欧州原子核研究機構（CERN）が保有する LHC 加速器のアップグレードのための高磁場マグネット用導体として適用された。さらに CERN からは、数年前に LHC 加速器の次世代構想として周長 100km の超巨大円形加速器（FCC）の建設計画が発表された[20]。FCC における超伝導マグネットでは、LHC の倍の大きさとなる 16T の磁場要観を目標としており、そこに使われる超伝導線材には 1,500 A/mm²（4.2K, 6T）の極めて大きな Jc が必要とされている[20]。現在、この条件を満たす長尺超伝導線材はなく、今のこところ、RRP 法を代表とした内部 Sn 拡散法線材が有力候補として改良が進められている。例えば、線材中の Nb 芯に Zr を微量添加し、同時に線材内部に SnO₂ を含有させることで大幅な Jc 向上が得られるという報告がある[20]。この線材を熱処理すると、Nb 芯中の Zr が優先酸化されて微細な ZrO₂ が形成され、それが Nb₃Sn 結晶の粒成長を抑制して Nb₃Sn の微細化に寄与するとともに、微細な ZrO₂ そのものが磁束のピント止めとして作用すると説明している。また、線材の内部に Gd₂O₃ 等の極低温での比熱に大きなピークをもつ物質を含ませて、線材全体の温度上昇を防いだ安定性を改善する試みも報告されている[20]。このように、主に高磁場 NMR マグネットや、核融合炉や高エネルギー粒子加速器などの巨大な国際プロジェクトを駆動力として、現在も高性能 Nb₃Sn 線材の研究開発が繰り広げられている。

図 11. RRP 法 Nb₃Sn 多芯線材（熱処理前）のフィラメント部の拡大写真[20]。

3.2. Nb₃Al 線材

1958 年のベル研での発見当初、Nb₃Al の Tc は 17.5K と報告されて Nb₃Sn よりも低いと見なされていた。ところが 1969 年、同じくベル研の Willens 等は、Nb と Al を混合して圧縮粉体を作
製して高周波で 1,700℃の高温加熱を行い、次いで 700℃の低温で均質化熱処理を行うと、18.8 K という高い Tc が得られることを報告した[33]。化学量論組成比の Nb3Al 相が高温のみで安定相であることに由来する。翌年 1970 年には、米国マサチューセッツ工科大学の Foner 等が 4.2 K での B2 が約 30 T であることを確認し[34]、Nb3Al の優れた高磁場特性が示された。さらに 1980 年代にようって、米国標準技術研究所 (NIST) の Ekin から Nb3Al の優れた耐ひずみ特性が示されて[35]、電磁力が高まる高磁場大型マグネット応用に向け Nb3Al への期待が大きく膨らみ、その実用線材の登場が待ち望まれた。VαGa や Nb8Sn では、二元系の相互拡散から Cu を加えた三元系の反応経路 (ブロンズルート) に置き換えることで A15 型化合物の単相を得ることができたが、Nb3Al にこの前例は通用しなかった。Nb と Al の二元系の拡散反応では、Al の拡散速度が遅いため、Nb3Al は NbAl と NbAl3 が非相接続を優先的に生成する。さらに Cu を加えた三元系でもその反応経路には三元系の p 相や C14 相 (ラベ fase) が介在し Nb3Al の生成が阻まれた[36]。図 12 に Nb3Al 相に至る拡散経路中にある存在する各種の中間相をまとめた。

そこで、Nb と Al の二元系において、強制的に拡散距離を短くして Nb3Al 相の生成を狙った線材化プロセスが進められた。1975 年、イタリアの Ceresara らからは、 Nb と Al の薄い箔を細い Cu 棒に重ね巻きし、それを Cu 管に挿入して加工する方法を提案した[37]。伸線加工後に Al 箔の厚みは 200 nm まで薄くなり、850℃程度の低温熱処理でも比較的多くの Nb3Al 相が生成されることを見出した。生成した Nb3Al 相は、低温拡散反応で化学量論組成比からずれているため 15.6 K 程度の Tc であったが、10 T 以上の高磁場下で 1,000 A/mm²以上の高い Jc を得ることができた。

この複合加工法は、後にジェリーロール法と呼ばれている。その後の 1980 年に京都大学の秋篠良三らが PIT 法[38]、1988 年に金属材料技術研究所（現 NIMS）の井上善一らが RIT (Rod-In-Tube) 法[39]を 1989 年に東北大学の斎藤秀明らが CCE (Clad-Chip-Extrusion) 法[40]を提案し、Nb と Al の拡散距離を短くして低温拡散反応させるための複合加工法が続くと検討された。いずれの手法も拡散距離を短くすることで Jc は向上した。これらの複合加工法の内、量産まで進んだのは唯一ジェリーロール法で、我が国では住友電工が図 13 に示す条長 16 km の Nb3Al 多芯線材が開発され、当時、総長 230 km (重量で 1 ton) の量産が行われ[41]。この量産線材の開発は、日本原子力研究所（現 QST）とドイツ ITER への応用を目指して実施されていったが、最終的にその実現は叶わず、当時の Nb3Al 多芯線材の開発は急速にフェードアウトしていった。

また Nb3Al には、これまで述べてきた A15 相が拡散反応で得られない他に、高い Tc が得られる化学量論組成比をもつ A15 相は 1980℃以上の高温でのみ安定であるという特徴があった。NIMS の研究グループでは、先の拡散法 Nb3Al 線材とは別の独自のアプローチで線材開発が進められてきた。特性のよい A15 相を得るために高温
図14. 急熱急冷処理装置の実写写真[44]。右上ポビオンから左上ポビオンにNbAl前駆体線材を高速で巻き替える。その途中の右下の純鋼製ガイドブーリーと箱形Ga浴の間（約150mm）で通電加熱と急冷処理を連続的に行う。

熱処理の制御を組ったプロセス開発が繰り広げられた。1985年頃には戸村一正らにより、高温のNbAl融合を高速移動する加熱されたCuテーブルの表面に連続的に吹き付けて急冷する手法[42]が検討され、また1987年頃には熊倉浩明らによりNbとAlの前駆体線材を電子線レーザー等の高エネルギービームで照射して高温短時間の熱処理を連続的に行う方法[43]が検討された。いずれも長尺処理が難しい問題があった。1990年代になって、井上健治により通電加熱と液体金属のGa浴急冷を組み合わせた「急熱急冷法」が提案された[44]。長尺のNbAl前駆体線材を供給リールから巻取リールに巻き替えながら、その途中で直流通電して2000℃近傍に自己加熱させ、引き続き室温近傍のGa浴に導いて急急する連続処理装置が開発された。図6は急熱急冷装置の外観写真である[45]。この急熱急処理では、体心立方晶（bcc）のNbにAlが過飽和に固溶した合金相が生成される。この過飽和固溶体はNbとAlがA15相の化学量論組成となっており、室温では鶏安定相である。そこで800℃程度の追加熱処理を行うと、bcc相からA15相に相変態する。このため、「急熱急冷法」は「急熱急冷・変態法」とも呼ばれる。相変態後のNbAlは、全体的には化学量論比に近い組成が維持されている。しかし微細的にみると、結晶粒内には無数のAl濃度に富んだ積層欠陥が形成され、さらに大傾角の粒界とともに小傾角の亜粒界も多く認められた（図15）[46]。これまでに拡散生成するA15型超伝導体に確認される格子欠陥は結晶粒界が主なものでのった。このような複雑且つ階層的な格子欠陥構造が有効なビン止め点として作用しているためか、これまでの拡散法Nb₃Al線材やブロンズ法Nb₃Sn線材より格段に高いJcが得られた。その実用化が待望され、安定化のためのCuの複合技術も開発されて、高磁場NMRの内蔵コイルや高磁場加速器用マグネットのためのプロトタイプも開発されたが、最終的には実用化の日の目を見ることはなかった[47]。特性は優れているが、非常に高減な制御が必要な熱処理や安定化鋼を付与するために特殊な処理を必要とする。この複雑で幾多のグリーンプロセス非自生性急熱急冷法Nb₃Al線材の実用化の大きな壁となった。

最近、NIMSの菊池正弘らにより箔の毛よりも細いジェリーーロール法Nb₃Al極細線材の開発が行われて世界的に注目を集める（図16）[47]。一般的にNb₃AlやNb₃Sn等の化合物系超伝導材料は、伸線加工した後に熱処理を行って超伝導相を生成させるため、熱処理後の線材は脆く簡単に折れる。そのため、コイル化は伸線加工後にまず巻き線し、その後に熱処理を行うWind&React法が広く用いられている。この方法においては、熱処理に耐えるガラスやセラミックス製の高価な絶縁材を使わなければならない。また熱処理時に線材の熱膨張及び収縮によってコイルの巻き緩みや電気的な短絡が発生するなど、数多くの問題

図15. 急熱急冷法Nb₃Al線材の相変態後のNb₃Al相に観察される複雑な格子欠陥[47]。
点が指摘されている。現在普及している MRI や建物が進められているリニアモーターカーの超伝導磁石には Nb-Ti 合金線材が使われているが、 Nb-Ti 合金は高圧加工後の状態で超伝導線材として取り扱い、且つ冷間で自営に塑性変形することも可能である。巻き線後の熱処理は不要なために安価な有機線材が使えて、巻き線が発生することもない。これにより、高い磁場精度をもった超伝導マグネットが安価に製造されている。もし、 Nb-Ti 合金より高性能な化合物系超伝導が Nb-Ti 合金線材と同等のハードリングで取り扱うことができれば、その実用化は一気に加速されるだろう。化合物系超伝導線材をフレキシブルにするため、高通信用で使われるグラスファイバーのように線径を極めて細くすればいい。耐びずみ特性に優れる Nb₃Al は機械的な曲げに強い。また、細径となることで 1 本あたりの通電容量が低下する問題があるが、極細線を束ねて推すことで電流容量を簡単に増加でき、また束ねても素線間はくて逃げないので可とう性が劣ることもない。従来のノミリスク型多芯線材よりもツイストビッチを短くすることでき、また束ねた際の素線間の結合も小さくすることが容易となって交流損失の大幅な低減という効果も期待される。 図 17 は、昨年 (2021 年) に菊池から国際磁性技術会議 (MT27) で発表された結果 (外径 20 ミクロン) よりも細い外径が 17 ミクロンの超極細 Nb₃Al 超伝導線材の断面写真である [48]。安定化に寄与する無酸素鋼管の内部に、同じく無酸素鋼ロッドの周囲に Nb箔と Al箔を重ね巻きした粉末体が格納されている。おそらく世界で最も細い異種金属の複合加工線材である。引き続き更なる極細化と長尺化、そして高 Jc 化の取り組みが行われている。

4. 銅酸化物系線材

4.1. Bi 系線材 (Bi-2212 及び Bi-2223)

1986 年、スイス IBM チューリッヒの Bednorz と Müller による Tc が約 30K の銅酸化物超伝導体の発見は [49] 、世界的なフィーバーを巻き起こして、より Tc の高い新物質を求めた探求が活発に行われた。翌年の 1987 年には、米国ヒューストン大学の C.W. Chu らの研究グループが液体窒素温度 (77K) を超える Tc を示す Y-Ba-Cu-O を発見し [50] 、この翌年の 1988 年には金属材料技術研究所（現 NIMS）の前田弘らが、初めて 100K を超える Tc を示す Bi-Sr-Ca-Cu-O を発見した [51]。発見当初の論文では二段階の超伝導移転線が発表され、後に Tc が約 110K の Bi₂Sr₂Ca₂Cu₃O₈ (Bi-2223) 相 [52] と、約 85K の Bi₂Sr₂Ca₁Cu₂O₈ (Bi-2212) 相 [53] であることが判明する。その他に Bi₂Sr₂Cu₃O₈ (Bi-2201) 相 [54, 55] も Bi 系として分類されるが、Tc は約 20K と低い。これら 3 種類の Bi 系超伝導体では、Tc の高い Bi-2223 と Bi-2212 の線材化が世界的に進められた。いずれも金属管に粉末を充填する PIT 法が一般的な線材プロセスとして適用されている。金属管に純 Ag あるいは Ag 合金が用いられる。高価にも関わらず Ag が用いられるのは、充填した酸化物粉末とは反応せず、且つ、大気中（あるいは酸素を含む

図 17. 外径 17 ミクロンのジェリーロール法 Nb₃Al 超伝導線材の断面写真。灰色の母材は安定化錫 [48]。
図 18. Bi 系超伝導体の結晶構造[56]。

図 19. Ag シリーズ Bi-2212 多芯線材の熱処理後の超伝導フィラメント[58]。

反応後の結晶組織はさらに複雑になる。従って、結晶成長と圧延を交互に繰り返して機械的に結晶方位を矯正する手法がとられ、線材は平薄のテーブ形状となる。しかし、この熱処理と圧延の組み合わせだけでは大気中で熱処理すると、板状結晶はランダムに成長して空隙の多い組織となる。そこで、約 300 気圧のガス圧で加圧焼成することで大幅に空隙を無くすことができ、Jc が大幅に向上した (図 20)[59]。さらに線材製造の歩留まりも向上できたことで、Bi-2223 線材の工業製品と紡の距離が一気に縮まった。Bi-2223 線材はテーブ導体として住友電工で製造販売ならびに開発が進められている。基材が柔らかい銀であることから、強度を高めるために薄い Ni 合金や Cu 合金テーブを両面に張り付けて補強されている[60]。これら高強度 Bi-2223 テープ線材は、NIMS の1020 MHz NMR 用マグネット[59]や東北大学の
4.2. 希土類系線材（RE-123）

初めて液体窒素温度（77K）を超える約90KのTcをもつY系超伝導体（YBa_{2}Cu_{3}O_{x})はヒューストン大学らの研究グループにより発見された[66]。この超伝導体は、YサイトをNdからLuまですべての希土類元素に置き換えることができ、一部を除いて同じ構造（RE-123）で85〜95KのTcが得られる[67]。当初、Bi系と同様にAg管を用いたPIT法による線材化に取り組まれた。鋼酸化物系特有の層状の結晶構造で超伝導特性に異方性はあるが、Bi系とは異なり粒状結晶であることから結晶成長を利用したり機械的圧延を利用したりして結晶配向させることができず、低いJcしか得られなかった。さらに、超伝導電流を担うCuO_{2}面を線材の長手方向に揃えるだけでなく、面内の傾角も揃えて二次元（三次元）に配向させる必要がある。図21に示すように、面内の傾斜が5度ずつとJcはおよそ一桁減少ししてしまう[68]。そのため、従来の一般的な線材化技術である引抜き加工法の適用が難しく、単結晶基板上にエピタキシャル成長させるような成膜プロセスによる線材化が進められた[69]。ハステライなどの金属テープの上に拡散障壁となるバッファ層を結晶配向させて成膜し、その表面に超伝導膜をエピタキシャル成長させる。2段階の成膜処理が連続的に行われ、1段目のバッファ層の成膜はIBAD（Ion Beam Assisted Deposition）法と呼ばれている。結晶の<111>方向に対して斜め55度の<111>方向からArイオンビームを照射しながらYSZ（ZrO_{2}：Y_{2}O_{3}=92:8）をスパッタ蒸着すると、ランダム配向の基材上に特定方向のYSZ結晶粒が選択的に堆積した結晶配向膜が形成される。その理由として、イオンチャネリングでエッチングレートに差が生まれ、チャネリング方位の結晶粒が残留するという考え方がある[70]。最近ではYSZより高速成膜が可能なMgOがバッファ層とし、用いられている[71]。その後の2段目のRE-123層はPLD（Pulsed Laser Deposition）法[72]やTFA-MOD（Trifluoro Acetates-Metal Organic

図21. Y-123結晶薄膜の結晶粒界の傾斜とJcの関係[68]。

図22. RE-123テープ線材の構造[71]。
Deposition）法[31]、MOCVD（Metal Organic Chemical Vapor Deposition）法[34]などで連続成膜されている。図 20は最近の RE-123 テープ線材の構造である。実際には金属基材の上にはバッファーレートと RE-123 層の２種類ではなく、複数の酸化物層や安定化のための Ag 層や Cu も複合されて複雑な構造を呈している[71]。このような RE-123 テープ線材は、77K で高い Jc が得られるとともに、液体ヘリウム温度などの極低温かつ高磁場で最も高い Jc が得られる超伝導線材である。最近では人工ビンの導入にも成功し、Jc の向上と異方性が若干低減されている。このような RE-123 テープ線材は 2G conductor と呼ばれ、我が国では Fujikura、住友電工、昭和電線、Super OX 社、米国では古河電工資本の SuperPower 社、独国では Bruker 社や THEVA 社、中国では上海超伝導社、韓国では SuNAM 社など、世界的に複数のメーカーで開発が行われて市場もされている[73]。Bi 系の様に Ag を基材に使わないことから安価であることが期待されているが、ヨネモテルリ系の長足で均一な性能を得るのは依然として難しく、また電力機器などの交流応用や高い磁場均一度を必要とする高磁場マグネットには、幅広のテープ形状のために超伝導層を誘導される遮蔽電流ループによる不整磁場の影響が問題となっている。遮蔽電流や遮蔽損失の低減のためにスクリーニング技術による細分化が試みられているが[74]、切断部は均一な超伝導層を形成しやすく、また超伝導層が基材から剥離しやすくなるなど、まだまだ課題は多い。一方で応用側からの期待は大きく、液体窒素中で大電流が通電できるので、米国、ドイツ、韓国、ロシアなど各国では、複数の RE-123 テープ線材をらせん状に巻き付けたケーブルを導電ケーブルとして応用することが検討されている[77]。また、昨年（2021 年）にマイクロソフト社などから総額で 18 億ドル（約 2,040 億円）の巨額な民間資金を調達して話題になっているが、マサチューセッツ工科大学発のベンチャーである Commonwealth Fusion Systems 社は、SPARC と呼ばれる小型核融合炉の実現に取り組んでいる[78]。この SPARC は、プラズマを閉じ込むための超伝導磁石に RE-123 テープ線材を積層した大容量ケーブルによるパネルキ型コイルを検討しており、昨年の国際磁石技術会議（MT27）では 20K で 20T の磁場発生に成功したことが報告されている[79]。

5. MgB2 線材

MgB2 は 2001 年に青山学院大学の永松純らにより Tc が 39K の超伝導体であることが見いただされた[80]。鋼酸化物系と異なって 2 元系のシンプルな化学組成であるが、結晶構造は図 23 に示す六方品で他の金属間化合物系超伝導体と同様に延性はない。従って、Nb3Sn 線材で最初に Kunzler らにより試みられた PIT 法が線材化プロセスとして主流となっている。MgB2 そのものの粉末を金属管に充填する Ex-situ 法[81]と、Mg 粉末と B 粉末を充填する In-situ 法[82]がある。Ex-situ 法の場合、当初は金属管に粉末を充填しただけで超伝導電流を流すことができたため、熱処理不要が期待された。さらに充填粉末の密度を高くするほど Jc が向上し、イースト材として硬いステンレスなどが開発初期には用いられていた。しかし、ステンレスは極低温での残留抵抗が大きく熱伝導も悪いため、最近では Fe や Ni、あるいは Ni-Cu 合金のモネルやキュブロニッケルなどがシース材として使われ、さらに粒間の結合を強化する
ために熟処理が施されている。Ex-situ法では充填するMgB₂粉末の品質やサイズが大きく性能に影響する。一方、In-situ法では金属間にMg粉末とB粉末を充填して仲介加工を行った後に拡散反応させる。充填時に粉末は細かいほど好ましいが、Mgは酸化しやすいので微粉末の製造は無理がある。平均粒径が50ミクロン程度の粉末が一般的に市販されている。B粉末を結晶化した粉末より非晶質の粉末の方がMgとの反応性が高く、非晶質Bを原料として使用する場合が一般的である。Bはトルコで多く産出され、同国のPavezyum（PVZ）社で数十nmとナノサイズの非常に細かい非晶質B粉末が製造・販売されている（図24）[83]。Mg粉末とB粉末の粒子径の格差は大きく、両者の均質に混ざるというよりも、大きさのMg粉末に細かいB粉末がまとはりつくような状態であると思われる。MgB₂を生成するための反応温度は650℃程度で保持時間は30分～数時間と短い。さらにMgB₂にC（炭素）を添加すると、Tcは35K程度まで低下するが、Be2（4.2K）が30T近くまで向上し高磁場下のJcも向上する。C添加の効果はSiC添加がよく知られている[84]。SiC添加の場合、副生成物として微細なMg₂Si化合物が生成される。この微細なMg₂SiはMgB₂の結晶粒の微細化に効果があると考えられるが、Mgを余計に消費してしまう。Siを含まないコロネン（C₄H₁₂）やアントラセン（C₁₄H₁₀）などの炭化水素やリンゴ酸（C₄H₄O₅）などによるC添加でも高磁場下のJcが向上する効果が認められているが、反応の詳細は明らかではない[85]。また、Mg粉末の代わりにMg棒を原材料に用いるIMD（Internal Magnesium Diffusion）法と呼ばれる製法での線材開発もNIMSで進められている。微細なB粉末のみがコンパクトに充填された領域に、線材中央に配置されたMg棒からMgが拡散するため緻密な組織のMgB₂が得られやすく、MgB₂化合物あたりのJcは高い値が得られている。但し、Mg棒があった線材中央部には、熱処理後に大きなボイドができた[86]。

現在、市販されているMgB₂線材はPIT法線材のみである。イタリアのASG社からは、Ex-situ法MgB₂線材が製造・販売されている。既にオープン型MRIに応用された実績がある[86]。また、CERNのLHC加速器の高輝度アップグレード磁石にリンクさせる総計100kAを超える送電ケーブルとして採用され、2020年に60mの58.8kAプロトタイプケーブルがデモンストレーションされている。図25（a）はASG社製Ex-situ法MgB₂素線の断面写真、（b）は集合化ケーブルの断面写真である[87]。
In-situ MgB₂ 鋼材は、米国の HyperTech Research 社がオハイオ州立大学の研究グループと連携し、持続的に発巻な鋼材開発に取り組んでいる。同社では、図 26 に示すような金属テーブをチューブ状に連続的に成形しながら粉末を充填する CTFF（Continuous Tube Forming and Filling）法を適用している特徴がある[88]。図 27 は同社の MgB₂ 鋼材の一例であるが、チューブファーミング後の Nb バリアは溶接しているようで、ケーブル加工における圧縮などを受けると簡単に Nb バリアの溶接部は破壊して亀裂が生じるため、充填した Mg 粉末は熱処理中にバリア外に漏れて、Cu と著しく反応して性能が低下することが指摘されている[89]。また、HyperTech Research 社の鋼材とよく似た断面の MgB₂ 鋼材が韓国の Sam Dong 社で製造・販売されている（図 28）。超伝導特性もほぼ同等である[91]。しかし、同社は一般的な PIT 法で Nb 管を原材に用いているため、HyperTech Research 社と比較するとバリアは破壊しにくい。我が国においては、現段階では日立製作所で In-situ 法鋼材の開発が進められており、CERN と KEK との共同開発としてクライオストタン用ソレノイド磁石やオープン型 MRI のコイルの試作が報告されている[92]。図 29 はそれら試作に用いられた MgB₂ 鋼材の断面である[93]。鋼材の外側に Cu-Ni 合金（Monel）を使うところは HyperTech Research 社や Sam Dong 社と類似しているが、バリア材は Nb ではなく Fe が用いられている。その他にも、詳しい内容は明らかではないが、韓国の Kiswire 社や中国の WST 社でも In-situ 法 MgB₂ 鋼材研究開発が進められている報告がある[93, 94]。
MgB₂は酸化物系線材と異なって粒界の弱結合がないこと、軽量であること、比較的原材料が安価であること、従来の引抜き加工で丸線の製造が可能であることなど複数の利点が認められる。カーボンニュートラルなどの持続可能な社会の実現に向けて、今後、液体水素とタイアップした新しい応用への展開が大きく期待される。

6. 鉄系線材

鉄系超伝導体は2008年に東京工業大学の細野秀雄らの研究グループより発見された[96]。図30に示すような超伝導を担うFeAs面が酸素層で挟まれた層状の結晶構造を持ち[96]、この点は銅酸化物系超伝導体と類似している。鉄系超伝導を示す結晶構造群には、1111型（LaFeAsOₓ₁ₓFx）や

\[
\text{SmFeAsO}_{1+y} \text{など}, \quad 111型（LiFeAs \text{など}）, \quad \text{11型}（\text{FeSe} \text{やFeTeなど}）, \quad 122型（\text{BaFeAs}_2 \text{など}）
\]

の4種類が報告されている[97]。磁性を示す元素を含んだ物質が比較的高いTeを示すため、基礎理論や物性物理の分野から強い興味を集めた。金属系と同じくクーパー対の対称性がs波であるためd波である鋼酸化物系ほど結晶配向に敏感ではないことや、極低温でのBc2が50T以上とA15型化合物系より格段に高い特徴がある。原料が比較的安価であることも実用線材候補として有利と言及され、線材化の取り組みは我が国においてもいくつかラボステールの報告がある[98, 99]。隣国の中国では線材開発の国家プロジェクトも立ち上げられ、比較的活発にPIT法による線材開発が進められている[100]。但し、鉄系超伝導体は発見されて十数年しか経過しておらず、まだまだ物質として未知な部分がある。加えて、今のごろTcの高い組成は鉄とともに毒性のあるAgを含むため、世界的に見ると線材開発は情絶的であることは否めない。

参考文献

図30. 鉄を含む新型超伝導体LaFeAsO₁ₓFx（1111型）の結晶構造[96]。
[96] https://www2.kek.jp/ja/newskek/2008/novdec/LaFeAsO.html