HDターゲット

1. 固定標的 2. 回転標的

ハドロン生成標的に要求される項目

• 荷電二次ビームラインからの要求:

2次粒子を選別するために二次ビーム源はなるべく点線源に近い方が望ましい

中性二次ビームラインからの要求:
 実験のバックグラウンド低減のために二次ビーム源はなるべく点線源に近い方が望ましい

標的材: 白金(密度21.4g/cm³)、金(密度19.3g/cm³) ー次ビーム幅: (σ_x, σ_v)=(2.5mm, 1mm)

cf.

- J-PARCニュートリノ標的:
 - 炭素(密度1.8g/cm³)
 - $(\sigma_x, \sigma_y) = (4mm, 4mm)$
- J-PARC中性子標的:
 - 水銀(密度13.5g/cm³)
 - (σ_x, σ_y)=(39mm, 18mm)

2023年夏時点の最大ビーム強度:

- ハドロン実験施設: 65 kW
- ニュートリノ実験施設: 520 kW
- 中性子実験施設: 830 kW
- ビーム強度はハドロン施設が1桁小さいが、 ビームのエネルギー密度は他施設と同等 かそれ以上、発熱密度はハドロンが最大

※それ以外の要求:

- 放射線的、化学的に安定、安全であること
- 大強度ビームに耐えられる冷却効率を持つこと
- 高い残留放射能によるメンテナンス時の作業被曝を低減すること

過去のハドロン標的

期間	2009年10月 -2010年3月	2010年10月 -2010年11月	2012年1月 -2012年7月	2012年12月 -2013年5月
ビーム強度	3 kW	5 kW	10 kW	24 kW
標的	白金 (60mm)	白金 (60mm)	白金 (60mm)	金 (66mm)
冷却方法	自然空冷(対流)	自然空冷(対流)	間接水冷	間接水冷
外観形状				

ーつ前の標的:50kW標的

- ➢ 最大強度: 50 kW (6s cycle) => 57 kW (5.2s cycle)
- ▶ 間接水冷
- ▶ 熱伝導率の高さと銅に近い熱膨張率から標的材として金を選択
- ▶ 標的は気密容器に収納され、標的の健全性の監視のため容器内にHeガスを循環させる

▶ 2014年9月インストール
▶ 2015年4月ビーム運転開始

更なる強度増強のため標的更新

現在の標的:95kW標的

- ▶ 最大ビームパワー: 95kW(5.2秒サイクル)
- > 基本的な構造は前標的と同じ間接水冷方式
- ▶ 金の上にも銅冷却ブロックを接合して冷却 能力を増強
- 二次ビーム収量と冷却効率から金のサイズを最適化
- 熱応力緩和のため、金を上下に分割し隙間 を設ける
- ▶ 製作方法(HIP接合)はすでに確立

設計基準

実際のHIPと同じ熱処理を与えた金圧延材の JIS Z2241 13B号試験片で引張試験を行った

温度	引張強度	0.2%耐力	
(°C)	(MPa)	(MPa)	
25	118	8.6	
200	87	7.8	
400	43	7.6	

金-銅のHIP接合については、 上記の各温度で剪断試験を 行い、上記引張強度以上の 接合強度があることを確認

設計応力強さ S_M=min(S_B×0.85/3, S_y×0.85/1.5) S_B: 引張強度、S_y: 降伏強度 又は 0.2%耐力 10⁴疲労強度: 引張強度/2 10⁷疲労強度: 引張強度/3

- ▶ 粒子シミュレーションMARS+有限要素法ANSYS
- ▶ ビーム: 30GeV、95kW、5.2秒サイクル
- ▶ 水温:全て30°Cに固定
- ▶ 熱伝達率: 10000W/m²/K

高さ方向の熱伸び: max 0.10mm

	応力分類	応力計算結果	許容応力
金本体 (375℃)	熱応力	8.1 MPa	13.0 MPa
	高サイクル疲労 (Shot毎) に対する等価応力振幅	7.9 MPa	8.1 Mpa
	低サイクル疲労 (連続運転のon/off) に対する等価応力振幅	8.2 MPa	12.2 Mpa
接合部 (264℃)	熱応力	9.0 MPa	13.2 Mpa
	高サイクル疲労 (Shot毎) に対する等価応力振幅	9.0 MPa	12.2 Mpa
	低サイクル疲労 (連続運転のon/off) に対する等価応力振幅	9.2 MPa	18.3 MPa

いずれのケースも許容応力以下

95kW標的

- ▶ 最大ビーム強度: 95 kW (5.2秒サイクル)
- ▶ 気密容器内でヘリウムガスを回し、その放射性物質濃度 を測定することで、標的の健全性を監視
- ▶ 2019年インストール、2020年運転開始

C/C composite partition wall to prevent Be fragments from scattering

ビーム中心位置と温度分布

スピル中のビーム中心位置の変化を温度分布から推定 ➡️標的より1m上流のビームプロファイルモニターでの測定の傾向を再現

高繰り返し化の影響

- 取り出し時間が変わらないならば、同じ平均パワーでは繰り返しが早い方がpppが少ないので標的には有利。
- 1スピルでの温度上昇はpppに依存するので、pppが同じならば繰り返しを早くしても1スピルでの温度上昇は同じだが、その後のオフ・スピルでの冷却時間が短くなるので、その分ベース温度が上がり、最高温度が上がる。

スピル周期が短くなれば、より高い ビーム強度まで受け入れ可能

次の標的: 回転標的

150kW以上のビーム強度に対応

- ニッケルの端に金または白金を接合した円盤型標的 ("ユーロコイン")
- 回転させることでビーム発熱を分散
- 直接水冷またはHeガス冷却

新しいアイデア

風車方式

モーターやシャフトが不要

- 標的容器の気密性確保 が容易
- 高放射線環境下の装置 の小型化

問題:

- 標的容器の気密性
- 標的近傍の装置の大型化

冷却・回転方法の比較

- 冷却効率が高い
 - より高いビーム強度を受入可能
- 回転トルクが高い
- 耐食性が必要
- 大量のトリチウムが発生
- 水循環系のR&Dが必要
 - 下部タンクからの汲み上げ
 - イオン交換樹脂筒
 - 復水器
- Heガス循環系のR&Dも必要
 - Heガスに水分が混ざる

- 余計な"汚い"ものの発生が圧倒的 に少ない
 - NOx, 水素ガス, トリチウム
- 水循環系が不要
- 冷却効率が不明
- 回転トルクが不明
- 大流量のHeガス循環系が必要

"clean"であることが

Heガスを第1候補として開発中

気体ラジアル軸受 試作1号機

<u>静的負荷容量の測定結果</u>

Heガスで最高550rpm(空気で最高615rpm) までの高速回転に成功!!

回転駆動用ラバールノズル(ソニックノズル)

風車駆動のためのラバールノズル(ソニックノズル)を試作し、回転駆動試験を行った

<u>試験結果</u>

ノズルのしぼり径	最高回転速度	供給ガス圧	ガス流量	
ノズル無し (チューブ端)	~ 100 rpm	_	—	
Φ0.5 mm	225 rpm	0.70 MPa	20.1 l/min	
Φ1.0 mm	421 rpm	0.60 MPa	65 l/min	
Φ1.5 mm	542 rpm	0.45 MPa	122 l/min	
*500 rpm is planned operation spee				

先端内側は切削Ra1.6狙い もしくは、放電+化学研磨

Heガス冷却の冷却効率(2)

200rpm以上の回転速度で冷却効率測定をするための新しいテストベンチを製作

測定結果(空気)

温度管理された空気 (新規導入)

150kWビームに対して十分に高い冷却効率を500rpmで達成!

標的円盤の監視のため、静電容量式の耐放射線変位計を開発

耐放射線変位計の分解能測定

<u>分解能測定のセットアップ</u>

プローブとターゲットとの距離を 変えながら出力電圧を測定

測定結果

要求分解能を達成!

まとめ:ビーム強度増強は標的開発とともに

