8. 中性子生成ターゲット

高エネルギー加速器研究機構

原田正英

中性子生成ターゲット

1 はじ	めに	8 -1
2 中性	:子生成過程	8 – 1
2.1		8-1
2.2	世界の中性子源・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 -2
2.3	核破砕反応における中性子ターゲット	8 – 3
2.4	核破砕反応の入射エネルギー依存性	8 -4
2.5	中性子の減速	8 -4
2.6	中性子の反射	8 -4
2.7	線源集合体	8 -4
3 J-P/	ARC 核破砕中性子源	8 – 5
3.1	全体構成(中性子ステーション)	8 – 5
3.2	水銀ターゲット	8 – 5
3.3	液体水素減速材	8 – 5
3.4	中性子ステーション周辺	8 -6
3.5	中性子ビームラインと中性子実験装置	8 -6
3.6	粒子輸送計算コードシステム	8 -7
3.7	中性子計算と実測	8 -7
3.8	核発熱と放射線損傷	8 -8
3.9	放射化	8 -8
3.10	遮蔽評価	8 -9
3.11	キャビ—テーション損傷	8 -10
3.12	遠隔操作	8 -10
3.13	ターゲットの最適化	8 -11
3.14	減速材の最適化	8 -11
3.15	簡素化形状と工学形状	8 -12
4 まと	Ø	8 -13
参考文献		8 -13

中性子生成ターゲット

1. はじめに

中性子をプローブにする物質科学研究や生命 科学研究は、強度重視の科学とも言われ、中性子 源には、高い中性子強度を求められる。中性子を 生成する方法は様々あるが、大強度でパルス状を 目指すなら、加速した陽子ビームを利用し、核破 砕反応を利用した核破砕中性子源を用いること が多い。陽子ビーム出力に大きく依存するが、安 全上の設備が必要であるため、利得が低くなる傾 向にある。一方で、中性子源構成の最適化と適切 な工学設計により、中性子強度を大きく回復する ことができる。

本講義では、J-PARC 核破砕中性子源を主とし て、陽子ビーム入射から中性子ビーム供給までの 中性子生成過程を説明し、実際上の J-PARC の核 破砕中性子源を例にその説明を行う。

2. 中性子生成過程

2.1. 中性子生成反応

中性子生成には以下の種類がある種類があり、 その反応を示す図を Figure 2-1 に示す。

- 1、核分裂反応(例:研究用原子炉)
- 2、放射性同位元素(RI)による崩壊(Am-Be 線源
- 3、ガンマ線・電子線による光核反応
 (例:電子線加速器)
- 4、加速粒子による核反応 (例:DT中性子源)

5、高速に加速された粒子による核破砕反応 となる。これらを中性子源として利用するには、 原子炉中性子源(1)、RI線源中性子源(2)、加 速器中性子源(3~5)に大別される。

連続的に多量に中性子を発生されるには、原子 炉が良く、パルス状に大強度に発生されるには、 核破砕反応を利用することが良いとされている。 原子炉では、ウランなどの核燃料物質による核分 裂反応で発生した中性子を次の核分裂反応に利 用するため、連続的に反応が進むため、大きなエ ネルギーを加えることなく、中性子の生成が期待 でき、多量の中性子を発生しやすい。一方で、過 度な反応にならないように制御する必要性があ る。一方、核破砕反応は、高エネルギーに加速し た粒子を質量数の大きな原子核に衝突させるこ とで、原子核を破砕し、多くの中性子を発生させ る。また、放出された粒子が次の原子核で反応を 起こすなどカスケード的な反応が期待でき、多く の中性子を生成できる。一方で、加速のために多 くのエネルギーを必要とする。Table 2-1 に、主要 な中性子生成と中性子収量、エネルギーコストを 示す。

Figure 2-1、主な中性子生成反応の図解

名称	反応	中性子収量	中性子生成に必要なエ
			ネルギー
Cf-252 線源	放射性同位体	3.8 $\times 10^{9}$ /GBq	-
Ab-Be 線源	放射性同位体	$6 \times 10^4/\text{GBq}$	-
電子線加速器中性子源	光核反応	$1.7 \times 10^{-2}/e^{-1}$	2 GeV
(タングステン)			
DT 中性子源	核融合反応	$3 \times 10^{-5}/d$	10 GeV
Be(p, n)	核反応(交換反応)	$1.6 \times 10^{-3}/p$	4 GeV
U-235 核分裂炉	核分裂反応	2.3/fis.	180 MeV
陽子ビーム入射(水銀)	核破砕反応	80/p	38 MeV

Table 2-1、典型的な中性子反応と中性子収量、エネルギーコスト

中性子のエネルギー識別をするためには、中性 子の飛行時間を測定する方法が良く、利用効率と して、加速器でパルス状に生成することが良い。 一方で、大規模な加速器が必要となる。また、大 強度になるほど、除熱と遮蔽が重要となる。放射 性同位元素崩壊を利用する場合は、生成量は期待 できないが、ランニングコストが低くなる。光核 反応を利用する場合は、比較的扱いやすい電子線 加速器を使用できる。加速された粒子による核反 応でも、比較的小型の加速器を使用できる。

Figure 2-2 には、核破砕中性子源と原子炉との 中性子東スペクトルを示す[1]。軽水炉では、高エ ネルギー平坦なスペクトルであるが、核破砕中性

Figure 2-2、原子炉と核破砕中性子源でのスペ クトルの違い[1]

子源では、高速中性子に偏ったスペクトルになっている。

2.2. 世界の中性子源

1950年代からの世界の中性子源[2]は、Figure 2-3に示すように、まずは、原子炉中性子源が主 となってきた。1980年代より加速器中性子源が 活用され始められ、原子炉中性子源より、当初は、 実効熱中性子束が低かった。加速器の技術開発が 進み、加速器の出力が大きくなってくると、実効 熱中性子束は急激増加していき、近年では、原子 炉中性子源を凌駕するに至っている。第2ターゲ ットステーション計画が進んでいるので、加速器 中性子源の実効熱中性子束はますます高くなっ ていく。

Figure 2-3、主な中性子施設と熱中性子束[2]

2.3. 核破砕反応における中性子ターゲット

核破砕反応を見た場合、同じ入射エネルギーで も質量数が大きい物質の方が中性子の放出量が 大きくなる。そのため、ターゲット材としては、 タンタル、タングステン、水銀、鉛、ビスマスが 使われることが多い。中性子収量が多いウランを 使用することもあったが、自発核分裂や遅発中性 子生成によるバックグランド中性子が多いため、 近年では使用が避けられている。固体ターゲット としては材料強度が期待できるタンタルが使わ れていたが、残留放射能や崩壊熱が高く、近年は タンタル被覆したタングステンを使うことが多 い。Figure 2-4 は、ラザフォードアップルトン研 究所で稼働中のビーム出力 160kW の ISIS 中性 子源の固体ターゲットである[3]。固体ターゲット は、ターゲット板を複数並べて、その隙間に冷却 水を流して、冷却するという構成となっている。 固体ターゲットは、構造がシンプルであるが、間 接冷却なので除熱能力に制限があり、数十から数 百 kW 出力の施設で使われている。1MW クラス になると、除熱や熱応力の観点から、中性子生成 と冷媒を兼ねた水銀が使われるようになった。 Figure 2-5 は、1MW ビーム出力の J-PARC の核 破砕中性子源の水銀ターゲットである[4]。水銀は 質量数が大きく核破砕に適しており、さらに常温 で液体状のため、水銀を容器中に流し、ビームを 照射することで中性子を多量に生成している。ま た、ターゲット材自身を交換するような必要がな いため、容器のみを交換することで、ターゲット 材を継続して使用できる利点がある。一方、容器 自体は、放射線損傷に加え、キャビテーション損 傷を受けるため、その対策が必要である。水銀の 他に、鉛や共晶合金である鉛ビスマスを使う中性 子源もある。Figure 2-6 には、スウェーデンに建 設中の 5MW ビーム出力の ESS (European Spallation Source)の回転ターゲット[5]を示す。 材質はタングステンで、これをホイール状に配置 し回転させることで、放射線損傷と発熱を分散で きるメリットがあり長寿命化が期待できる。回転 機構や冷却機構がうまく稼働するか試金石とな る。

Figure.2-4、ラザフォードアップルトン研究所の ISIS 中性子源の固体ターゲット[3]

Figure 2-5、J-PARC 水銀ターゲット[4]

Figure 2-6、ESS の回転タングステンターゲッ ト[5]

2.4. 核破砕反応の入射エネルギー依存性

入射エネルギーが高いほど、生成される中性子 の量は増える。一方で、効率としては、陽子ビー ムの場合 1.1GeV 当たりが最も良いとされてい る。Figure 2-7 に、鉛ターゲットにおける中性子 収量実験値 (Y_p) とエネルギーコスト (ϵ_p) の陽 子エネルギー依存性を示している。陽子ビーム 1.1GeV のときにエネルギーコストが最も低くい ことが分かる[6]。

Figure 2-7、 鉛ターゲットにおける中性子収量実 験値 (Y_p) とエネルギーコスト (ϵ_p) の陽子エネ ルギー依存性[6]

2.5. 中性子の減速

生成された中性子のエネルギーは高いが、物質 生命科学実験に用いられる中性子は冷熱中性子

Table 2-2、2MeV から 0.025eV までの衝突回数[7]

名称	衝突回数
Н	18.2
H_2O	19.8
D	25.1
D_2O	35.8
Be	87.1
С	115
0	152
Fe	510
U	2172

が最もよいため、中性子を減速する必要がある。 中性子の減速は、原子核との弾性散乱を繰り返し ながら減速していくことが一般的である。Table-2・2 は、2 MeV から 0.025 eV までに減速される 際の弾性衝突の回数を示している[7]。弾性衝突 は、対象の原子核の質量数が小さいほど、中性子 の減速が早くなり、衝突回数が少なくなる。 Figure 2-8 は、水素、ベリリウム、鉛中での中性 子のエネルギーと減速時間との関係を示したも のである。水素含有物質である水素が最も早く減 速していることが分かる。一方で鉛では、中性子 の減速が遅いことが分かる。中性子の減速が遅い と、パルス状に中性子を発生される場合に、中性 子パルス幅の増大**客秘ving Down Time**

Figure 2-8、減速時間とエネルギーの関係

2.6. 中性子の反射

生成された中性子は、飛び散る方向に生成され る。反射材は、飛散する中性子を集めて線源の中 性子強度を高めるために使用される。反射材とし ては、散乱断面積が大きく、吸収断面積が小さい ことが望まれる。同時に減速も期待できることか ら、質量数の小さい物質が良い。炭素やベリリウ ムが使われることが多く、特に、ベリリウムは、 機械強度や伝熱性能がよいことから、大強度の核 破砕中性子源では、多く使われている。

2.7. 線源集合体

中性子生成ターゲットで生成された中性子は、 エネルギーが高いため、一般的には、冷熱中性子 領域まで減速させる必要がある。そのため、中性 子生成ターゲットの他に、反射体、減速材と呼ば れるものが必要である。これらを含めたものが中 性子ステーションと呼ばれる。

減速材は、中性子の減速過程の最終段に用いら れるもので、一般的には水素含有物質が使用され る。大強度の中性子源では、放射線損傷の観点か ら、液体水素が唯一の材料となる。水素含有材の 中では、液体もしくは固体メタンが良いとされ る。これは、水素密度が高いことと、中性子の減 速反応があることである。その他、軽水、ポリエ チレンが使われている。

反射材は、中性子生成ターゲットで発生した中 性子を使用する。全断面積が大きく吸収断面積が 小さい低質量数の材料が使われることが多い。ベ リリウムや炭素が良く使われる。

3. J-PARC 核破砕中性子源

3.1. 全体構成(中性子ステーション)

Figure 3-1に J-PARC 核破砕中性子源の全体構 成を示す[4]。中性子生成ターゲットとして、水銀 を使用している。J-PARC の核破砕中性子源は、 陽子ビームライン、陽子ビームが入射し核破砕反 応により中性子を生成する水銀ターゲット、発生 した中性子を反射、減衰させるベリリウム・鉄反 射体、実験装置に冷熱中性子を供給する液体水素 減速材、中性子を供給する中性子ビームライン、 中性子のビームを制御する中性子ビームライン、 中性子のビームを制御する中性子シャッターで 構成される。これらの機器の外側には、遮蔽体が 設置され、中性子源で発生する中性子を含む放射 線を遮蔽する。これらを含めて、一般的に中性子 ステーションと呼ぶ。

Figure 3-1、J-PARC 核破砕中性子源[4]

3.2. 水銀ターゲット

J-PARC の核破砕中性子源の水銀ターゲットを Figure 2-5 に示す。水銀ターゲット容器は、材料 強度が期待でき、放射線損傷に強いステンレス 316L 製であり、水銀を内封できる構造となって いる。水銀が漏洩した時の保護容器としてセーフ ティハル、セーフティハルを冷却する冷却水容器 で構成されている。Figure 3-2 に、水銀循環設備 [4]を示す。水銀は、陽子ビーム 1MW の入熱に対 し、0.5MW の発熱を除去する必要があるため、遮 蔽体の後ろに、水銀循環設備を設置しており台車 の上に設置されている。台車は、水銀容器と遮蔽 体ごと、移動できる構造となっている。

3.3. 液体水素減速材

Figure 3·3 に、J-PARC の核破砕中性子源にお ける減速材を示す[4]。3 台の 20K 液体水素減速 材で構成されており、中性子強度が高い結合型減 速材、中性子パルス性能を高めたポイズン型非結 合減速材、中性子強度と中性子パルス性能がよい 非結合減速材で構成されている。非結合型という のは、ターゲット・反射材と減速材の間に中性子 吸収材を設置しているもので、中性子パルス幅や 中性子のテールを広くする遅い中性子を吸収す ることで、中性子強度を犠牲にして、中性子パル ス特性をよくするものである。ポイズン型は、減 速材の中に中性子吸収材を設置し、減速材容器を 実効的に薄くして、中性子パルス幅を短くするこ とに機能する。減速材容器は中性子の吸収断面積 が小さいアルミニウム合金でできており、A6061 か A5083 が使用される。

3.4. 中性子ステーション周辺

Figure3-4 に、中性子ステーションの周りの機器の図を示す[4]。中性子ステーションは、遮蔽体で覆われているが、ヘリウムベッセルと呼ばれる

ヘリウムを充填して容器の中に、中性子ステーション機器が設置されている。その外側には、そこから、液体水素を循環する設備、水銀ターゲットを抜き差しする水銀台車、中性子シャッターを駆動するシャッター駆動設備、冷却水を循環する冷却水循環設備を要している。中性子ステーションの外側にも重コンクリートや軽コンクリート遮蔽体で囲まれている。

3.5. 中性子ビームラインと中性子実験装置

Figure3-5 に、中性子ビームラインの一例を示 す[8]。中性子源で発生した中性子は、中性子ビー ムラインを通って、中性子実験装置に導かれ、こ こで様々な実験を行うことになる。中性子実験装 置も、遮蔽体に覆われている。また、安全のため に、運転中に人が立ち入ることができない構成と なって、万が一の場合は、インターロック設備に より、ビームが止まる設計となっている。中性子 実験装置内に人が出入りする際には、中性子シャ ッターにより中性子を遮断する。

Figure3-6 は、現在の中性子実験装置の配置で ある[9]。23 本のピームポートがあり、うち、21 本のビームラインが使用されている。放射状に設 置されていることが分かる。

Figure 3-5、 中性子ビームライン[8]

Figure 3-6、J-PARC の中性子実験装置[9]

3.6. 粒子輸送計算コードシステム

J-PARC の核破砕中性子源は、あらゆるパラメ ータをシミュレーションベースで決定して建設 された施設である。その根幹をなすのが、粒子輸 送計算コードシステムである。Figure 3-7 に粒子 輸送計算コードシステムを示す[1]。Figure 3-8 に は中性子源の計算モデルを示す[1]。このコードシ ステムの中心に PHITS コード[10]を据えて、シ ンプルな計算モデルから計算をはじめ主要なパ ラメータを決定し、そこから詳細な計算モデルを

構築して、データを評価し、設計に活用した。発 熱データは、熱応力の計算に、放射線損傷データ は、寿命評価に、放射化のデータは、線量評価、 廃棄物計画に使用された。

Figure. 3-8、詳細な中性子源計算モデル[10]

3.7. 中性子計算と実測

粒子輸送計算コードステムにより、様々なパラ メータが導出され、活用されるが、最も重要なパ ラメータは、中性子源から放出され、中性子実験 装置に供給される中性子の特性である。Figure 3-9 に、中性子実験装置での中性子スペクトルの計 算結果と実測値を示す[1]。設計段階で、詳細モデ ルによる計算を行い、中性子特性を評価した。こ れらの計算値は、運転開始後に検証実験を行い、 実測値と良い一致を示すことを確認した。このよ うに、設計計算の妥当性を確認している。

3.8. 核発熱と放射線損傷

核発熱と放射線損傷は、計算結果の一例を Figure 3-10 に示す[11][12]。放射線損傷は DPA (Displacement Per Atom)で表記され、原子の弾 き出し数を意味する。ターゲット部分での核発熱 と放射線損傷が高いことが分かる。また、陽子ビ ームライン付近も高いことが分かる。これらをも とに、伝熱計算や熱応力計算を行い、中性子源機 器の工学設計を行った。

Figure 3-10、ターゲット周辺の放射線損傷と核発 熱分布[11][12]

3.9. 放射化

放射化量は、保管廃棄計画や作業計画を立てる 上で、重要なパラメータである。Figure 3-11 に、 ターゲット容器の運転後の放射性核種の時間変 化を示したものである。ステンレス 316 製の容器 は、半減期が長い Mn-54 (半減期:312 日) や Co-60 (半減期:5.3 年) が多く生成される。この2 核 種は、キャスク評価のみならず、保管廃棄計画に 大きな影響を与える。

Figure 3-12 は、使用済みのターゲット容器を 運搬する際に必要な遮蔽キャスクの設計計算に 使用したものである。生成された放射性核種のデ ータをもとに、ガンマ線の輸送計算を行って遮蔽 厚さを決めている。

Figure 3-11、ターゲット容器の放射能成分と時間 変化

Figure 3-12、遮蔽キャスクにおける線量分布計算

3.10. 遮蔽評価

遮蔽体は、人の被ばくを低減するために必要不可欠なものである。Figure 3-13 は、中性子ステーションの遮蔽計算を行ったものである[13]。っ バルクでの線量は十分低いが、シャッター上部や 中性子ビーム孔など空隙がある部分では、線量が 高くなることが分かる。このように、3 次元的な 遮蔽計算を行い、必要な厚さ、材質、構造を決め ていった。

Figure 3-14 は、中性子実験装置の遮蔽計算の 計算モデルの一例、Figure 3-15 はその線量分布 の計算結果である[8]。中性子実験装置と上流側遮 蔽体の隙間から少し放射線が漏れ出しているこ とが分かる。ビームストップや通路では、十分に 遮蔽できていることも分かる。

Figure 3-13、中性子ステーションの遮蔽評価[13]

Figure 3-14、中性子実験装置における遮蔽計算の 計算モデル[8]

Figure 3-15、中性子実験装置における遮蔽評価 [8]

3.11.キャビーテーション損傷

キャビテーション損傷は、液体である水銀を使 用する場合には免れない。陽子ビームが入射した 水銀は発熱を生じ、圧力波を生じる。圧力波が壁 面に達した後、逆に負圧になりキャビテーション 損傷が生じる。キャビテーション損傷は、負圧に なった際に、水銀がジェットのように噴出し、壁 面に損傷を与えるものである。

Figure 3-16 は、アメリカの核破砕中性子源ある SNS においてターゲット容器壁面に観測されているキャビ―テーション損傷である[14]。このように、壁面に孔食を生じさせるほどの損傷が生じる。

J-PARC の核破砕中性子源では、同様な問題が 発生する可能性があったため、Figure 3-17 のよ うに[15]、ターゲット容器を二重化し、水銀中に ヘリウムガスバブリングを行うことで、キャビテ ーション損傷の低減・対策を行っている。Figure 3-18 に示すように[15]、現在までに、容器を貫通 するような損傷は発生しておらず、水銀漏洩事象 は発生していない。

Figure 3-16、SNS におけるキャビテーション損 傷 [14]

Figure 3-17、ターゲット容器の二重化とバブリン グ[15]

Figure 3-18、J-PARC でのキャビテーション損傷 の様子[15]

3.12. 遠隔操作

水銀ターゲット容器は、高度に放射線損傷を受けるために、1年に1回、交換する必要がある。 同時に高度に放射化するために、直接人の手で交換することは困難である。そのため、負圧管理をしたホットセルを設置し、その中で、水銀ターゲットの交換ができるような遠隔操作機器を備え ている。Figure 3-19 は、遠隔操作機器の一つで あるパワーマニュピュレーターの写真である[4]。 遠隔で移動することができ、遠隔でボルトの開け 閉めをすること出来る。

Figure 3-19、パワーマニュピュレーター[4]

3.13.ターゲットの最適化

Figure 3-20 にターゲットの最適化の例を示す [16]。ターゲットは材質によって強度が違うだけ でなく、陽子ビームのエネルギーによって、強度 と位置が異なる。そのため、パラメータを振るこ とで、最適な位置を見つけ出す必要がある。

Figure 3-20、ターゲットの直径、材質、エネルギ ーと漏洩する熱中性子強度の依存性[16]

3.14.減速材の最適化

中性子特性に大きく影響を与える減速材の最 適化は、重要である。Figure 3-21 は、結合型減速 材のサイズ依存性を示したものである[17]。減速 材サイズが大きいほど、中性子強度が高くなる が、ある程度のサイズからは大きな増加が見られ ないことが分かる。Figure 3-22 は、中性子パル スのポイズンの位置依存性を示したものである [18]。ポイズンの位置が大きくなるほど、中性子 強度は増加するがパルス幅も増加する。 Figure 3-23 は、非結合型減速材のサイズ依存性を示して いる[19]。厚さ 6.2cm あたりで頭打ちになってい ることが分かる。

Figure 3-21、結合型減速材のサイズ依存性[17]

Figure 3-22、ポイズンの位置と中性子パルス特性 [18]

Figure 3-23、 非結合型モデレータのサイズ依存 性[19]

3.15. 簡素化形状と工学形状

中性子強度やパルス計算では、簡素化モデルと 工学モデルとを使い分けている。簡素化モデルで はパラメータの設定しやすいため、パラメータを 設定する際に使用する。一方、工学モデルは、実 状に合わせたもので、絶対値を決める際には必要 となる。Figure 3-24 には、非結合型モデレータ の中性子スペクトルの違いを示す[20]。簡素化モ デルと工学モデルとでは、中性子スペクトルの形 状は変わらないが絶対値に違いが見える。これ は、工学モデルには、容器や材料、空間など、中 性子の強度を落とす要因が入っているためであ る。Figure 3-25 は中性子パルスの違いを示す [20]。簡素化モデルと工学モデルとでは、パルス のテールに違いが見える。これは、溶接による中 性子吸収材の欠損が存在するからである。

Figure 3-24、 非結合型モデレータでの中性子ス ペクトルの違い [20]

Figure 3-25、パルス特性の違い [20]

4. まとめ

物質科学研究や生命科学研究で有効なプロー ブである中性子を使用する中性子施設は、小型化 されている X線装置や大強度・高輝度化が期待で きる放射光施設と比べ、追いつけない部分があ る。それでも、強力なツールとなるように中性子 生成に関する技術開発が進められている。国内外 の施設では、新規の核破砕中性子源の計画や建設 が進められている。また、国内で新たな研究炉の 設置計画が立ち上がっている。これらが中性子科 学の未来を作っていくものである。

本テキストが、中性子生成ターゲットを理解す る一助となることを期待する。

参考文献

- M. Harada, et al., "Application and Validation of Particle Transport Code PHITS in Design of J-PARC 1 MW Spallation Neutron Source", Prog. Nucl. Sci. Technol 2, (2011) 872-878
- [2] K.H. Andersen1 and C.J. Carlile, "A Proposal for a Next Generation European Neutron Source", J. Phys.: Conf. Series 746 (2016) 012030.
- [3] Home page of ISIS Neutron and Muon Source: <u>URL:https://www.isis.stfc.ac.uk/Pages/home.aspx</u>.
- [4] Neutron Source Section, "Techinical Design Report of Spallation Neutron Source Facility in J-PARC", JAEA-Technol. 2011-035 (2012)

- [5] R. Garoby, et al., "The European Spallation Source Design", Pyhs. Scr. 93 (2018) 014001.
- [6] A.V. Daniel, et al., "Neutron Production in Lead Target by High-Energy Light-Mass Heavy Ions", JINR-1-92-174 (1992).
- [7] "原子炉工学大要",長谷川 修 他、養賢堂、1977 年発刊
- [8] M. Harada, et al., "Shielding Design of a Neutron Beam Line "NOBORU" at JSNS/J-PARC", Prog. Nucl. Sci. Technol., 1 (2011) 94-97.
- [9] Home page of J-PARC MLF: URL: https://mlfinfo.jp/ja/blmap.html, as of July 2023
- [10] T. Sato, et al., "Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02", J. Nucl. Sci. Technol. 55, (2018) 684-690.
- [11] 物質・生命科学実験施設建設チーム,"大強度陽子加速器プロジェクト 物質・生命科学実験施設機器技術設計書", JAERI-Tech 2004-001, JAERI (2004).
- [12] M. Harada, et al., "DPA calculation for Japanese spallation neutron source", J. Nucl. Mater. 343 (2005) 197–204.
- [13] F. Maekawa and M. Tamura, "3-D shielding calculation method for 1-MW JSNS", Proc ICANS-XVI, Düsseldorf-Neuss, Germany (2003) 1051-1058.
- [14] D.A. McClintock, et al., "Small-bubble gas injection to mitigate cavitation-induced erosion damage and reduce strain in target vessels at the Spallation Neutron Source" Materials & Design, 221 (2022) 110937.
- [15] T. Naoe, et al., "Mitigation of Caviation Damage in J-PARC Mercury Target Vessel", Proc. 14th IWSMT, JPS Conf. Proc 28 (2020) 081004.
- [16] 渡辺 昇, "核破砕中性子源工学概論", JAERI-Review 2000-031, JAERI (2000).
- [17] T. Kai, et al., "Neutronic performance of rectangular and cylindrical coupled hydrogen moderators in wide-angle beam extraction of low-energy neutrons", Nucl. Instr. Meth. A 550 (2005) 329-342.
- [18] M. Harada, et al., "Neutronics of a poisoned parahydrogen moderator for a pulsed spallation neutron source", Nucl. Instr. Meth. A574 (2007) 407-419.
- [19] M. Harada, et al., "Optimization of decoupled hydrogen moderator", Proc ICANS-XV, Tsukuba, Ibaraki, Japan, JAERI-Conf, JAERI (2001) 793-807.
- [20] M.Harada, et al., "Deterioration of pulse characteristics and burn-up effects with an engineering model in Japanese Spallation Neutron Source", Proc ICANS-XVII, LA-UR-06-3904, LANL 2 (2006) 700-709.