

第41回高エネルギー加速器セミナー OHO '24 新奇・革新的な加速技術

誘電体アシスト型加速管(1)

(国研)産業技術総合研究所 分析計測標準研究部門

佐藤 大輔

1

【はじめに】

- 本講義では、誘電体アシスト型加速管に関連する内容を網羅的に紹介します。
- 本講義では、電子ビームのみを取り扱う。
- 本講義で、紹介しきれない前提知識や詳細な計算等に関しては、講義テキストにまとめていますので、ご興味がある方は読んでみてください。

【謝辞】

本講義で紹介する内容は、KEK 吉田先生、夏井先生、阿部先生、Nextef2関係 者の皆様、東工大・林崎教授、三菱重工機械システム株式会社の皆様らからの 多大なるご協力のもと得られた成果になります。

本研究は、JSPS科研費 13J08681、16H02134、19K20609、22H03882並びに、 文部科学省「将来加速器の性能向上に向けた重要要素技術開発」事業 JPMXP1423812204の助成を受けたものです。

【本講義の流れ】

誘電体アシスト型加速管(1)

- 加速管の前提知識
- 誘電体加速管
- ・誘電体アシスト型加速管の原理

誘電体アシスト型加速管(2)

- ・誘電体アシスト型加速管の原理実証
- 高電界化に向けた取り組み

【電磁波】

4

周波数における分類

自由空間を伝搬する電磁波

【加速管の構造】

金属境界を設けることで進行方向に電場をもつ伝搬する状態(モード)が存在する→ TMモード

【進行波型加速管】

電子の入射側から高周波を入力し、加速管下流に向かって伝搬する進行波の 加速電場を用いて荷電粒子を加速する加速管

提供:夏井 拓也 氏(KEK)

【定在波型加速管】

電磁波をある金属筐体の中で共振させ、その内部に発生する定在波の加速電場 を利用して電子を加速する加速管。

誘電体アシスト型加速管(本講義)

【加速管の性能パラメータ:無負荷Q値】

0

2

3

5

Frequency (GHz)

• 加速管での電力損失が小さい

【高*Q₀*值条件】 • 加速管材:高電気伝導率:Cu

• 高周波:低周波数带

10

9

【加速管の性能パラメータ:シャントインピーダンス】

引用元: http://ilc.kek.jp/photos/20080516Di/20080516Di-0025.php

- 無酸素銅製
- 進行波型
- • 周波数:X-band (8~12 GHz / え₀ = 25~37 mm)

高電界加速が可能 *E_{z, ave}* > 100 MV/m

超伝導加速管

引用元: http://ksc.kek.jp/2nd_2008/gaiyou/sc08/

- 高純度ニオブ製
- 定在波型

【誘電体に着目した背景①】

高周波損失が少ない

高い耐電圧特性

[引用元 *] M. C. Thompson, et al., PRL 100, 214801 (2008)

【実験内容】 SiO₂チューブ(内径100 µ m)に、30-330フェムト秒の電 子バンチを入射し、チューブ内で発生するWakefieldによ る絶縁破壊特性を測定

<u>高い耐電圧特性^[*]</u>

 $E_{surface} \sim 27 \text{ GV/m}@\text{SiO}_2$

誘電体の高い耐電圧特性を利用することで、金属製加速管を越える 高い加速電界を実現できるのではないかと考えた

【誘電体を用いた加速管①】

【誘電体装荷型加速管(<u>D</u>ielectric <u>L</u>oaded <u>A</u>ccelerating structure, DLA)】

金属管内に誘電体円筒を装荷した誘電体装荷型加速管(DLA)が主流

- •無酸素銅製 / alumina, SiO₂, MgTiO₃, etc…
- •進行波型加速管
- •運転周波数: X-band ($8 \sim 12 \text{ GHz} / \lambda_0 = 25 \sim 37 \text{ mm}$)

利点

- ・構造が非常にシンプル
 → 高周波数帯でも製作が容易
- ・低コストで製作可能

課題

・マルチパクタリング現象 (誘電体表面での2次電子放出の増大現象)

- ・金属ー誘電体管のマイクロギャップ放電
- ・電力効率が低い(Z_{sh} ~ 66 M Ω /m@SiO₂, X-band)
- ・加速電界が低い(8 MV/m@X-band)

引用元:Y. Wei, 20th GSI Accelerator Seminar(2021)

【誘電体を用いた加速管②】

フォトニックバンドギャップ加速管(Photonic Band Gap Accelerating structure, PBGA)

- 誘電体ロッドの2次元周期構造に よって生じる電磁波の伝搬できない 周波数領域(PBG)によってRFを閉じ 込める。
- 高次高調波の抑制が可能

【概要】

• 高周波数帯加速管に適用可能

【開発現状】

引用元: J. ZHANG,et.al, PHYS. REV. ACCEL. BEAMS 19, 081304 (2016)

加速電界: *E_{acc}* = 19 MV/m @17.14 GHz 表面電界: Esurf < 78 MV/m @ sapphire ビーム加速: 未(Cu rod typeはあり)

【誘電体を用いた加速管③】

誘電体円板装荷型加速管(<u>D</u>ielectric <u>D</u>isc <u>A</u>ccelerating Structure, DDA)

- 1940年代に提案
- 群速度が高い
 - → 短パルスのRFが使用可
- *Z_{sh}*が高い
- ビーム加速の実績あり

【開発現状】

最先端の高誘電率・低損失セラミックス技術 X ビーム駆動大電力RF発生技術(X-band, ~320MW, ~20ns)

TABLE IV. Simulated rf parameters of the clamped DDA prototype.

Parameter	Value	Unit
Dielectric constant	47.7	
Loss tangent	3.44×10^{-4}	
Quality factor	8500	
Shunt impedance per unit length	174	$M\Omega/m$
Group velocity/c	0.270	
Phase advance (multicell design)	$2\pi/3$	
$E_{\rm surface,max}/E_{\rm acc}$	1.44	

引用元: B. FREEMIRE et al. PHYS. REV. ACCEL. BEAMS 26, 071301 (2023)

【誘電体加速管の課題】

同軸誘電体装荷型加速管は、加速管のシャントインピーダンス(電力効率)が一般 的な銅製常伝導加速管よりも低い。

【誘電体加速管】

ビーム加速にエバネッセント波(誘電体内部を伝搬するRFがその境界から漏洩した表面波モード)を利用

$$v_p = \frac{\omega}{\beta} < c$$

 高周波電力の大部分は誘電体内部を伝 搬し、僅かに真空領域へ浸みだしたごく 一部の高周波電力を加速に利用

【加速管内のエネルギー密度分布】

投入したRF電力をビーム加速に有効に利用できず、加速効率 (Z_{sh}) を原理上向上させることが困難。

【高電力効率加速管の検討】

高効率誘電体加速管に向けて同軸誘電体装荷型構造の2次元モデル計算に着手

【同軸誘電体装荷構造の2次元モデル】

円筒座標系(r, θ, z)における電磁波の波動方程式

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + k'_i^2 E_z = 0 \qquad \dots \qquad (4.1)$$

【前提条件】

 真空領域(i = 1,3)においても真空中の光速cよりも大きい 位相速度で伝搬する電磁界モードのみを考える。

$$k'_{i} \equiv \sqrt{\omega^{2} \varepsilon_{i} \mu_{0} - \beta^{2}} > 0 \quad (i = 1, 2, 3) \quad \dots \quad (4.2)$$

• 位相速度を光速c以下にする誘電体構造(周期的な誘電体 円盤装荷等)は、ここでは議論しない。

上記の条件のもと、(4.1)式を解析的に解き、同構造内での高周波損失について解析を行った。 *詳細な導出に関してはテキスト4.3参照

【伝搬モード】

【同軸誘電体装荷構造の2次元モデル】

【TM₀₁モード】

【TM₀₂モード】

- 本講義では、電子加速に向けた検討のため、TMモード(軸 方向に電場を持つモード)のみを取り扱う
- ・ 真空一誘電体境界(1) $r = a_{l}$, (2) $r = b_{l}$ における E_{z} , H_{θ} の 連続性と(3) $r = c_{l}$ の金属境界条件 $E_{z}=0$ より、導出される方 程式を解くことでTM_{0n}モードの電磁場分布が得らえれる。
- ・ 整数nは、径方向の節(モード)の数を意味しており、(3)を 満たすc₁の内、n番目に小さい値のTMモードの解と対応

【導体損失】

【同軸誘電体装荷構造の2次元モデル】

金属表面での半波長あたりの導体損失P_{wall}

【計算条件】
•
$$f = 5.712 \text{ GHz}$$

• $\varepsilon_r = 10.0$
• Conductor : Cu
*Pillbox cavity (Cu)
 $P_{wall}/|A_1|^2 = 1169 \text{ W} \cdot \text{m/MV}^2$

<u> TM₀₁モード</u> Pillboxより導体損が大きい 誘電体同軸構造が非常に薄 くする必要がある。 <u> TM₀₂モード</u> Pillboxより導体損の1/4以下 誘電体同軸構造の厚みも リーズナブル

【計算条件】

• $\varepsilon_r = 10.0$

•

• f = 5.712 GHz

 $P_{wall}/|A_1|^2 = 1169$

**ɛ_r* 大きく依存するので注意 20

【誘電損失】

領域Vにおける誘電損失
$$P_d$$

 $P_d = \frac{\omega}{2} \varepsilon'_r \varepsilon_0 \tan \delta \int_V |E|^2 dV$... (4.18)
2次元モデル内の半波長当たりの誘電損失 P_d
 $P_{die} = \frac{\omega}{2} \varepsilon_2 \tan \delta$
 $\times \int_0^{2\pi} d\theta \int_0^{\frac{\lambda}{2}} dz \int_{a_1}^{b_1} |E^{i=2}|^2 r dr / (\lambda_0/2)$
 $= \frac{\pi}{2} \omega \varepsilon_2 \tan \delta$
 $\times \int_{a_1}^{b_1} [\{A_2 J_0(k_2 r) + B_2 Y_0(k_2 r)\}^2$
 $+ \frac{\beta^2}{k_2^2} \{A_2 J_1(k_2 r) + B_2 Y_1(k_2 r)\}^2]r dr$... (4.19)

 tan δ ~ 10⁻⁵であれば、誘電損失は非常に小さい
 誘電損失が比較的小さくなる形状と導体損失が 最小になる形状はほぼ一致

【TM₀₂モードの全電力損失】

【計算条件】
•
$$f = 5.712 \text{ GHz}$$

• $\varepsilon_r = 10.0$
• Conductor : Cu
*Pillbox cavity (Cu)
 $P_{wall}/|A_1|^2 = 1169 \text{ W} \cdot \text{m/MV}^2$

- tan δ ~10⁻⁵となると全電力損 失でもPillboxでの導体損失の 1/3以下
- $\varepsilon_r = 10.0$, tan $\delta \sim 10^{-5}$ はアル ミナセラミックスの物性値

商用のセラミックスを用いて低損 失のTMモードの伝送が可能

に挑む。つぎを創る

【全電力損失と誘電特性の関係】

16

SrLa1.03Al0.97O4

【全電力損失の ε_r , tan δ 依存性】

カラーマップ上の各ボックスの値は、その誘電特 性で全電力損失が最小になる構造の値を示す (条件:*f* = 5.712 GHz, Conductor : Cu)

【各誘電体の誘電特性】

No.	Material		Er	tanδ	f(GHz)
1	MgO		9	2×10 ⁻⁵	9
2	Alumina		10	1.2×10 ⁻⁵	9
3	TiO ₂ -doped Alumina		10.15	7.25×10 ⁻⁶	8.95557
4	MgTiO ₃ -CaTiO ₃		21	1.25×10 ⁻⁴	7
5	$Ba(Mg_{1/3}Ta_{2/3})O_3$ - $Ba(Mg_{1/2}W_{1/2})O_3$		24.2	2.5×10 ⁻⁵	10
6	Ba(Mg, Ta)O ₃		25	2.86×10 ⁻⁵	10
7	Ba(Zn _{1/3} Ta _{2/3})O ₃		30	7.14×10 ⁻⁵	12
8	BaO-TiO ₂ -WO ₃		37	1.13×10 ⁻⁴	6
9	$Ba_2Ti_9O_{20}$		39.8	1.25×10 ⁻⁴	4
10	Sr(Zn, Nb)O ₃ -SrTiO ₃		43	2×10 ⁻⁴	5
11	$Pb_{0.6}Ca_{0.4}La_{0.5}(Mg_{1/2}Nb_{1/2})O_3$		45	1.09×10 ⁻⁴	10
No.	Material	$arepsilon_{\parallel}/arepsilon_{\perp}$	tar	$\delta_{\parallel}/\tan\delta_{\perp}$ @300K	f(GHz)
12	Quartz	4.427 / 4.644		1×10 ⁻⁵ / 8×10 ⁻⁶ *	16.9 , 17.2
13	MgO	9		4×10 ⁻⁶	7.5
14	Sapphire	9.4 / 11.587		6×10 ⁻⁶ / 2×10 ⁻⁵	21.4,21.7
15	YAG	10.6		2×10-5	20.2

同構造で全電力損失を最小とするには、BMT系 やAl₂O₃, MgO系の誘電体材料が適している

19.8 / 16.85

 $6 \times 10^{-5} / 2 \times 10^{-5}$

11.8, 12.1

【誘電体アシスト型加速管】

(<u>D</u>ielectric <u>A</u>ssist <u>A</u>ccelerating structure, DAA)

1. 誘電体製円板を周期的に配置することで位相速度を制御

2. 電磁場分布を制御し、導体損失を抑えるために同軸構造を利用

3. 加速に高次共振モード(TM_{02n} mode)を利用した定在波加速管(5.712 GHz)

【DAA管の基本構造】

形状パラメータ:6つ (a_l, b_l, c_l, h, D, L)

【Regular Cellの役割】

- ビーム加速に寄与する加速セル
- 金属円筒部での導体損失を低減化

形状パラメータ:7つ $(r_1, r_2, r_3, l_1, l_2, l_3, h)$

【End Cellの役割】

- ビーム加速を想定しない。
- 金属端板表面での導体損失を低減化

ともに挑む。つぎを創る。

【加速モードの電磁場分布】

【DAA管内でのエネルギー密度分布】

27

【Regular cellの形状最適化】

- ビーム軸方向に無限に周期構造が続いていると仮定。
- 加速管の共振周波数は5.712 GHz(C-band)。
- 誘電体はアルミナ ($\varepsilon_r = 10.15$, tan $\delta = 7.25 \times 10^{-6}$)を使用。
- 各(*a₁*,*c₁*)の組み合わせで*b₁*を共振周波数に調整する。目的の共振周波数になる*b₁*がなければ解なし。

(a)

 R_{sh} (M Ω/m)

【DAA管の無負荷Q値とシャントインピーダンス】

【DAA管が高電力効率となる要因】

無酸素銅製加速管内での高周波損失

金属円筒表面での導体損失 $P_{wall} \propto c_1, |H_{\theta}(c_1, z_{center})|^2$

【電磁場分布のr方向依存性】

- 回転磁場のピークが円筒表面近傍
- f_0 は、 c_1 でほぼ決まるため電磁場分布を調整できない

【DAA管が高電力効率となる要因】

DAA管内での高周波損失

<u>金属円筒表面での導体損失</u>

 $P_{wall} \propto c_1$, $|H_{\theta}(c_1, z_{center})|^2$

 $|H_{\theta}(c_{1}, z_{center})| / |H_{\theta}(r_{max}, z_{center})| = 0.23$ • f_{0} は、 (a_{1}, b_{1}, c_{1}) の組み合わせで決まる → 電磁場分布の大幅な調整が可能。 • 円筒表面近傍の回転磁場強度が小さくなる解が存在

【DAA管が高電力効率となる要因】

金属円筒表面での導体損失

DAA管の場合、管内半径は2倍となるが、導体表面での回転磁場が1/4になるため、導体 表面での導体損失は、銅製加速管の約1/8に低減化。→ 高電力効率化

【End cell の効果の検証】

【DAA 単セル空洞の設計】

【設計方法】

不確定である9つの形状パラメータ($a_1, b_1, c_1, r_1, r_2, r_3, l_1, l_2, l_3$)を滑降シンプレックス法を用いて DAA管のシャントインピーダンスが最大となる組み合わせを探索。

D. SATOH, et. al., Phys. Rev. Accel. Beams 19, 011302 (2016)

【End cellの効果】 金属端板表面上の回転磁場強度が小さくなるため、 エンドセルを有する方が加速管性能が向上する。

【商用セラミックスを用いたDAA管の加速管性能】

無酸素銅製加速	管	5セルDAA管	
	↓ 約45 mm	約90 mm	
Parameter	C-band copper cavity	5 cell DAA Structure	
Dielectric Material	—	TiO ₂ -doped Alumina	
ε _r	—	10.15	
Loss tangent	—	7.516×10^{-6}	
Accelerator type	standing wave type	standing wave type	
Accelerating Mode	TM_{01} - π mode TM_{02} - π Mode		
Operation Frequency	5.712 GHz	5.712 GHz	
unloaded - Q	12,674	$\rightarrow 10$ 122,000	
Shunt impedance	142 MΩ/m	$\rightarrow 4.4 \rightarrow 656 \text{ M}\Omega/\text{m}$	

D. SATOH, et. al., Phys. Rev. Accel. Beams 19, 011302 (2016)

【加速モードの電磁場分布】

引用元: D. Satoh, et. al., PRAB 20, 091302 (2017)

【電力効率向上に向けた検討:高誘電率誘電体】

【DAA管内での高周波損失と代表的な誘電体材料】

DAA管内での電力損失の小ささという点で BMT-BMWセラミックスが最適

BMT-BMWセラミックスを用いた DAA管の加速管性能

Parameters	Mat. : BMT-BMW
ε _r	24.2
tanð	2.5×10^{-5}
Acc. type	Standing wave type
Acc. Mode	TM_{02} - π mode
Num. of Acc. cells	5
Frequency	5.712 GHz
Temperature	20 °C
Q_0	121,200
Z _{sh}	870 MΩ/m

D. Satoh et al., NIM:B 459, 15, 148 (2019).

- BMT-BMWセラミックスモデルはAl₂O₃のモデルより、 *Z_{sh}*の30%以上向上が期待
- BMT系セラミックスは、難焼結性セラミックスであり、 材料調達自体に課題があり。