2024年9月13日 9:00~10:00,10:10~11:10 3号館セミナーホール@KEK

第41回高エネルギー加速器セミナー の日の24 部分。草部的を加速数が

大電力半導体スイッチ

目本原子カ研究開発機構 J-PARCセンター 加速器ディビジョン 高柳 智弘

世界初、素粒子ミュオンの冷却・加速に成功

~ミュオン加速元年、ついにミュオン加速器の実現へ~

どんな加速器か?

写真 1 J-PARC 物質・生命科学実験施設(MLF) ミュオン実験施設で行われたミュオン冷却・加速の実験装置。正ミュオンビームが右側から入射し、写真右手前の装置で冷却され、その左側にある高周 波加速空洞で加速される。加速空洞の左奥に加速されたビームの診断装置が設置されている。

J-PARC

茨城県那珂郡東海村

MLF

MLFのビームはRCSからやってくる

RCSでつくられた大強度ビームはMLFに送られ、2次粒子の生成に使われる

ダンプ部の電磁石 ・ダンプセプタム ・ダンプ四極 ・ダンプステアリング 2台 入射部の電磁石 ・水平シフトバンプ 4台 ・水平ペイントバンプ 4台 ・垂直ペイント 2台

2台

4台

2台

・可変偏向 ・入射ステアリング ・入射セプタム

出射部の電磁石 ・キッカー電磁石用 8台 ・出射セプタム電磁石 3台 ・低エネルギー偏向電磁石 2台

輝かしい実験成果の裏にはたくさんの電源がある。

「加速器の性能は電源で決まる」といっても過言ではない。 電源から出力する電圧・電流を制御する機器が"スイッチ" スイッチを制する者は加速器を制す

大電力半導体スイッチ

内容 ・スイッチについて ・開発のモチベーション ・開発中の半導体スイッチの紹介 ・設計時に検討して欲しいこと

※RCSキッカー電磁石用の半導体パルス電源を中心に紹介 (設計の流れ)

スイッチとは?

スイッチの役割

【概念図】

(時間)

(時間)

(時間)

12

J-PARCとRCS、キッカーシステムについて

RCSとキッカー電源の励磁波形

【2バンチ運転時のイメージ】

3GeVビームを短パルスで蹴り出す

キッカー電源で使用している大電力高速スイッチ サイラトロン(放電管)

サイラトロン

RCSキッカー電源の主な構成機器

キッカー電源:二つの同じシステムで一つの電源(双子型)

- 現システムは80kV/4kAのPFN回路電源
- サイラトロンスイッチを採用

RCSでは8台のキッカー電源で運転をしている。

サイラトロンとキッカー電源の特徴と現状

◆大電力高速短パルス出力用スイッチ
 ◆サイラトロンだからキッカー仕様を満足できる

80kV以上の高電圧
 4kAの大電流
 80nsの高速応答
 マ換頻度Ⅰ,2年 = 在庫保持
 ★ ん設の稼働率低下
 ● 高いランニングコスト
 ○ (人件費・維持費)

キッカー電源に求められること

「半導体スイッチ」を使用した新しいパルス電源の開発

サイラトロンからの卒業

"放電管"から"パワー半導体"へ

◆パワー半導体の現在の主流はシリコン(Si)を用いたIGBTやMOSFET

使いやすさと低コストで民生用・産業用として広く使われている。

IGBT

:高耐電圧圧(~4.5kV)だが高速特性が劣る(50,000ns: 20kHz)

MOSFET

:高速特性(~10,000ns: 100kHz)に優れるが耐電圧性能が劣る(~250V)

キッカー電源に必要な性能を満足することができない。

- 高速特性(250ns以下)
- 高い耐電圧特性(80kV以上)

次世代パワー半導体を使う

従来品より「高耐圧」「高速」「低スイッチング損失」の特性に優れた次世代パワー半導体 (Si-IGBTなど) (SiC-MOSFETなど)

項目	Si	SiC	特徴	加速器用パルス電源として有意な特徴		
バンドギャップ (eV)	1.12	<mark>3.26</mark>	高温動作	高耐圧	•	高電圧
絶縁破壊電界強度 (V/cm)×I0 ⁵	0.3	<mark>3.0</mark>	高耐圧 低オン抵抗	低オン抵抗 高放熱特性	-	大電流
熱伝導度 (W/cmK)	1.5	<mark>4.9</mark>	高放熱特性	高温動作	-	高繰り返し動作
飽和ドリフト速度 (cm/s)×10 ⁷	1.0	<mark>2.7</mark>	高周波動作	高周波動作	-	短パルス出力

次世代パワー半導体『SiC-MOSFET』

- シリコンカーバイド(SiC)を用いたパワー半導体。
- 高速性能(数10ナノ秒)、耐電圧性能に優れる。
- ⇒ IGBTとMOSFETのいいとこ取り?!
- 小型で電力損失が小さい。
- 従来品と比べて約70%の低損失化←実はこれが凄くイイッ!

CREE製C2M0045170P@米国 Peak voltage:1700V Peal current:250A Rise time : 13ns

高性能パワー半導体の単一素子での「大電流化」「高電圧化」には限界がある

多重化回路の構築が必要

並列多重化回路

高精度なパルス波形の形成に求められる「低ノイズ」と「波形の低歪み」はどうだろうか?

利点① 対称の回路構成がノイズを打ち消しあう。

平坦部のノイズが少ない

【出力電流波形イメージ図】

➡ 開発した放射対称型回路が大電流パルスの高精度化を実現できる。

【放射対称型スイッチ基板】

【線対称型スイッチ基板】

【ベース回路】

放射対称型スイッチ基板の試験

【放射対称型スイッチ基板】

線対称型スイッチ基板の試験

【線対称型スイッチ基板】

比較測定結果

基板タイプ	Ⅰ層(出力800V)	2層(出力1600V)		
放射対称型	48ns	45ns		
線対称型(50mm)	54ns	52ns		
線対称型(300mm)	74ns	70ns		

低歪み+低インダクタンス 放射対称型の実力を確認!

放射対称型回路の優位性を確認した。

キッカー電源用半導体モジュール回路基板

誘導電圧重畳回路(LTD:Linear Transformer Drivers)[※]
 磁性体コアを使用し、伝搬電磁波の形で電圧を足し合わせる方法
 放射対称型半導体スイッチとLTD回路の組合せ

※発案・製品化
 長岡技術科学大学 江先生
 パルスパワー技術研究所 徳地氏

※一般的な構造は高電圧になるほど絶縁設計が必要

|枚当たり:|250V/2kA/|.2µs/25Hz

電力伝送導体回路の最適化

低インダクタンス回路構造の検討

より高速な立ち上がり時間が欲しい 🔶 電流路の構造改善で低インダクタンス化

モジュール基板毎に電流路をまとめる

OPERA-2D解析(static magnetic field)

Vector potential [Wb/m]

Vector potential [Wb/m]

同軸型

14.0

175.4

OPERA-2D計算結果(static magnetic field)

$$I \sim 9^{\circ} 7 9 \sim 7$$

 $L = \frac{2W_e}{I^2} [H/m]$
(I=400A)
Item 支柱型
 $W_e[mJ/m]$ I5.1
L[nH/m] I88.7 約7%減

費

電流経路構造のインダクタンス依存を評価 ●FETスイッチをバイパス ●ダイオードを削除

□ 電流値が17.5%増加
 □ 解析結果(7%)との違い

➡表皮効果を含めた動磁場解析の評価を検討

ギャップスイッチ

同軸型が有効であることを示した。

10/16
パルス反射波の処理

パルス回路

◆ エネルギーの蓄積 コンデンサに電荷を蓄える(**充電**)

◆ 瞬間的に大きなパワーを取り出す スイッチを入れて電荷を放出する(**放電**)

$$\boldsymbol{V} = \boldsymbol{L}\frac{\Delta \boldsymbol{I}}{\Delta \boldsymbol{t}} + \boldsymbol{R}\boldsymbol{I}$$

理想とのズレ

ドループ補正の評価結果

主基板1~5

補基板 | 用運転トリガ

【補正後出力電圧波形】 主基板1~5、補基板1~4

補正基板でドループ補正が可能

高電圧の出力回路

直列多重化回路(LTD方式)

 □ 直列多段接続で電圧を誘導的に合成(=モジュール基板の積層) 無限に高い電圧出力が原理的に可能
 □ 物理的な銅バーやケーブルで接続しないため浮遊容量の影響が小さい

直列多重化回路の問題

インピーダンスのミスマッチング

高電圧化に伴い電流伝送路が長尺化 → 放射対称型回路だけでは解決できない問題が発生
 ①電流伝送路の内導体と外導体のインピーダンスミスマッチによる波形歪み
 ②耐電圧性(絶縁性能)と放電抑制の両立の困難化

ストレート型内導体 ⇒インピーダンスミスマッチ

回路抵抗 Z_x(積層段数:電圧に依存) + 特性インピーダンス Z₀(内導体と外導体の径に依存)

テーパー型内導体 ⇒回路基板の枚数(出力電圧)に合わせて導体径を最適化できる → 伝送路が長尺化しても全域でインピーダンスのマッチングが可能!

インピーダンスマッチングのパルス波形評価

■ 導体内の電位差由来のインピーダンスミスマッチの確認
 ■ 出力波形への影響と導体形状による解消可否について

【内導体形状違いによる出力波形立ち上がり時間比較】 条件:負荷抵抗22.5Ω=テーパー型とマッチング

テーパー型が約5ns速くなった。

※波形歪に明確な差が見られない。抵抗値の差が小さかった可能性有。

➡マッチングの効果を確認!

半導体化の利点

出力電圧の低減

【PFNケーブルドラム】 ・同軸ケーブルIIOm ・エネルギー蓄電・パルス出力用

【キッカーシステム概念図】

半導体電源化でPFN回路(ケーブルドラム)が無くなる。
⇒回路全体の抵抗2Rが半減する → R
⇒必要な電流Iは変わらないので電圧は半分でよい。
I × R = V → 40kV 半導体電源の電圧は現在の80kVの半分でOK。

◆ ケーブル端末部で発生する放電事象は主に80kV部で発生。
 ◆ 出力電圧の半減により故障のリスク低減が期待できる。

【伝送導体の縦横断面図】

連続運転後(8時間×3セット)

【運転後に最上段の基板を外した状態】

24時間通電後(8時間×3セット)
 外導体(銅リング)の内面に<u>わずかな緑青</u>を確認
 ⇒コロナ放電が<u>まだ</u>発生している

絶縁油に頼らない絶縁(サステナブル化)

「導体ー絶縁体ー気体」の三重点の強電界部を、絶縁体のメタライズ加工と形状の最適化により緩和

□ 三重点の電界強度が空気の絶縁耐力(コロナ臨界値)の30kV/cm以下を実現。
 □ 電位固定に必要なメッキ処理の管理が難しい(手塗り、メッキが付きにくいなど)。
 □ 曲面形状と銅リング接触子の構造取り合い(筒を通すため)が厳しい。

長尺型絶縁筒の製作

製作:旭金属工業株式会社

□ 短尺のユニットで連結が可能であることを確認。原理的に長尺限界が無い。
 □ 絶縁体の曲面形状は困難であるため、絶縁筒の厚みを増して耐コロナ性を高める。
 □ 銅メッキ厚が1.25mmと厚く内導体として使用できる。導体筒の削減が可能。

実機で活きる設計

バイバス回路の設計

基板故障 ⇒ 交換作業に多くの時間を費やさず短時間での復旧を可能とする。

【設計回路】

【プロトタイプ】

【製品版】

【主回路基板】

バイパス回路の影響評価

※銅板をねじ止め 【バイバス無し】 【バイバス有り】

> 主回路基板3枚使用 真ん中の1枚をバイアス

□ 出力波形にバイパス有り無しによる有意な差は見られない。
 □ バイバス回路(銅板)の温度上昇はΔt=6℃(8時間通電後)

RCSキッカー電磁石用 半導体パルス電源ユニットの完成

キッカー電磁石用の新しいパルス電源

【出力電流測定結果】

【半導体パルス電源ユニット】

主回路:32枚、補正回路:20枚 定格出力:40kA/2kA/1.2us/25Hz

□ キッカーシステムの要求仕様を満たすことを確認。
 □ 次世代パワー半導体を用いて、小型化・省電力化が実現できることを確認。

現電源と新電源の比較

半導体化により小型化に。さらに、電力損失を低減し省電力化も実現!

現在の状況と今後の予定

【実負荷試験の様子】

□電源ユニット2台で実負荷試験を実施。
□2年以内に4台の電源ユニットを製作し、既設電源とリプレースする予定(したい) 61

今後の展望・期待

次世代パワー半導体の性能アップ

【旧型】

【新型】

【放射対称型LTD回路新旧モジュール基板】

項目	従来型	新型
製造メーカー	ROHM	CREE
V _{DS} (V)	1200	1700
素子評価耐電流(A)	180	250
並列回路数	15	8

電源回路のさらなる小型化・省エネ化が期待できる。

項目	出力仕様(40kV/2kA)	
半導体デバイス数(個)	2340 → 768	(-1572)
主回路基板数 (枚)	52 → 32	(-20)
ユニット電源高さ(mm)	2020 → I480	(-540)

電気代が高騰しています。

使用電力量

J-PARC(リニアック、RCS、3NBT)電力予測(11月分)

加速器で使用する全部の電源を 次世代パワー半導体の電源に変えたら?

クローバー装置用 イグナイトロン代替スイッチの開発

イグナイトロン代替半導体スイッチの概要

【オーバル型基板モジュール】 (1枚当たり3kV)

MOSゲートサイリスタ ・IXYS MMIXIH60NI50V ・I.5kV/II.8kA(I0µs),5.3kA(50µs) ・単回路:3直列3KV耐電圧

◆ |枚当たり|6並列回路で40kAの耐電流性能を確保
 ◆ 最終仕様:40枚直列接続にて|20kV/40kA/50µs出力

【IO層積み(30kV/40kA)】

成果と予定

■ 直列4層積みで120kV/40kAの10分の1スケール(12kV/40kA)における性能を確認済み。
 ■ 現在120kV耐圧試験の準備中。2025年度中の完成を目指している。

J-PARC リニアック クライストロンシステム

クライストロン

クライストロンシステムの小型化

クライストロン用新MARX電源の開発

項目	本番機	試験機
電圧	I 20kV	8kV
電流	60A	60A
パルス幅	830us	830us
繰り返し	25Hz/50Hz	ΙΗz
出カリプル	0.1%	۱%
主回路 構成	8kV出力 #15units	8kV出力 #I unit
補正回路 構成	Ⅰ2kV出力 Ⅰ20V100段	800V出力 80V10段
平均電力	300kW (25Hz)	20kW (25Hz)

【設計仕様】 主MARX・補正MARX・充電器の連動動作(8kV/60A/1Hz)を実施

■ 80µsの時間間隔で出力した10段のステップ状の波形を合成し、830usのパルスドループを補償
 ■ 400V(5%)⇒56 V(0.7 %)を確認

次世代パワー半導体を用いた電源について

半導体用回路設計·構造設計

□次世代パワー半導体
SiC-MOSFETの活用
今後の期待:GaN(窒化ガリウム),
Ga2O3(窒化ガリウム), C(ダイヤモンド)

■低ノイズ・高波形精度
同軸型放射対称回路
LTD回路

□ 高絶縁・絶縁材(油、ガス)が不要 耐コロナ 故障低減、廃棄物削減

■メンテナンス性
バイパス回路で短時間での復旧が可能
長寿命化・安定化

半導体化の利点

□ 高効率・低損失化・省電力化
電気代の削減
冷却設備(冷却水・空調)が不要・縮小
変電設備の小型化

□ 装置の小型化
設置場所が限定されない
電力ケーブルの短縮化
建屋・設置場所の狭小化

省スペース化、省エネ化 冷却水が不要となれば・・・(^▽^)/

将来計画·展望

- □ 可搬型加速器・ミュオンイメージング トラック・コンテナを使った移動式の加速器 移動式の医療用加速器、X線非破壊検査など
- □ 加速器新設時の土地・建屋・電気代・維持費の削減

□「サステナブル」な社会をつくる

SUSTAINABLE G ALS

13 気候変動に 具体的な対策を

持続可能な開発目標 (Sustainable Development Goals: SDGs)

設計時に検討して欲しいこと

メンテナンス性を考えた構造

物は必ず壊れるという考えをもつこと 調査、交換作業がやりやすい設計

筐体のファラデーゲージ化

ユニット:金属メッキ

「盤間」という概念を無くす

未塗装・メッキ処理のフレームで製作し筐体をファラデーゲージ化 GND強化により電位差とノイズが低減

火災事故の「想定外」と「リスク」

利用運転の長期停止 社会的信頼の失墜

火災になってしまった原因は? 火災になる前に止めることができなかったか?

転極器右側面(内部の様子) https://j-parc.jp/c/information/2023/10/24001223.html

https://j-parc.jp/c/information/2023/06/08001216.html

転極器 ハドロン電源棟(2024年6月)

変圧器 MR第2電源棟(2024年4月)

図4 焼損したトランス周辺の写真 https://j-parc.jp/ja/topics/20150219press.html

変圧器 MLF実験ホール(2015年1月)

問題点、疑問点の理解 J-PARC火災事故は確認不足などの「ミス」による人災(人的要因) 改善点の洗い出しと適切な対策の導き出し インターロックなどのシステムを適切に導入する(工学的対策) 電流・電圧の監視システム 分析力を高める(管理的対策)

火災の多くは"設計ミス"や認識不足による"見逃し"が原因で発生している。 過去の事象を分析し、工学的対策を適切に講じる技術力が求められる。

世界初、素粒子ミュオンの冷却・加速に成功 ~ミュオン加速元年、ついにミュオン加速器の実現へ~

謝辞

小野礼人氏(KEK), 堀野光喜氏, 植野智晶氏 杉田萌氏, 不破康裕氏, 篠崎信一氏(JAEA)

株式会社パルスパワー技術研究所 徳地明氏,生駒直弥氏,亀崎広明氏,中田恭輔氏

ニチコン草津株式会社

内藤伸吾氏、青木孝典氏、志井春重氏